This paper represents a first attempt toward an alternative way of computing reduction-based feedback à la Arstein for input-delayed systems. To this end, we first exhibit a new reduction state evolving as a new dynamics which is free of delays. Then, feedback design is carried out by enforcing passivity-based arguments in the reduction time-delay scenario. The case of strict-feedforward dynamics serves as a case study to discuss in details the computational advantages. A simulated exampled highlights performances.
Reduction-based stabilization of time-delay nonlinear dynamics / Mattioni, Mattia; Monaco, Salvatore; Normand-Cyrot, Dorothee. - (2018), pp. 3471-3476. (Intervento presentato al convegno 57th IEEE Conference on Decision and Control, CDC 2018 tenutosi a Miami; United States) [10.1109/CDC.2018.8619434].
Reduction-based stabilization of time-delay nonlinear dynamics
Mattioni, Mattia
;Monaco, Salvatore;
2018
Abstract
This paper represents a first attempt toward an alternative way of computing reduction-based feedback à la Arstein for input-delayed systems. To this end, we first exhibit a new reduction state evolving as a new dynamics which is free of delays. Then, feedback design is carried out by enforcing passivity-based arguments in the reduction time-delay scenario. The case of strict-feedforward dynamics serves as a case study to discuss in details the computational advantages. A simulated exampled highlights performances.File | Dimensione | Formato | |
---|---|---|---|
Mattioni_Reductio-Based-Stabilization_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
279.89 kB
Formato
Adobe PDF
|
279.89 kB | Adobe PDF | Contatta l'autore |
Mattioni_Postprint_Reduction-Based-Stabilization_2018.pdf
accesso aperto
Note: https://ieeexplore.ieee.org/document/8619434
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
240.38 kB
Formato
Adobe PDF
|
240.38 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.