In this paper we propose an anytime planning/replanning algorithm aimed at generating motions allowing a humanoid to fulfill an assigned task that implicitly requires stepping. The algorithm interleaves planning and execution intervals: a previously planned whole-body motion is executed while simultaneously planning a new solution for the subsequent execution interval. At each planning interval, a specifically designed randomized local planner builds a tree in configuration-time space by concatenating successions of CoM movement primitives. Such a planner works in two stages. A first lazy stage quickly expands the tree, testing only vertexes for collisions; then, a second validation stage searches the tree for feasible, collision-free whole-body motions realizing a solution to be executed during the next planning interval. We discuss how the proposed planner can avoid deadlock and we propose how it can be extended to a sensor-based planner. The proposed method has been implemented in V-REP for the NAO humanoid and successfully tested in various scenarios of increasing complexity.

Anytime Whole-Body Planning/Replanning for Humanoid Robots / Ferrari, Paolo; Cognetti, Marco; Oriolo, Giuseppe. - (2018), pp. 209-216. (Intervento presentato al convegno 18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018 tenutosi a Beijing; China) [10.1109/HUMANOIDS.2018.8624935].

Anytime Whole-Body Planning/Replanning for Humanoid Robots

Ferrari, Paolo
;
Oriolo, Giuseppe
2018

Abstract

In this paper we propose an anytime planning/replanning algorithm aimed at generating motions allowing a humanoid to fulfill an assigned task that implicitly requires stepping. The algorithm interleaves planning and execution intervals: a previously planned whole-body motion is executed while simultaneously planning a new solution for the subsequent execution interval. At each planning interval, a specifically designed randomized local planner builds a tree in configuration-time space by concatenating successions of CoM movement primitives. Such a planner works in two stages. A first lazy stage quickly expands the tree, testing only vertexes for collisions; then, a second validation stage searches the tree for feasible, collision-free whole-body motions realizing a solution to be executed during the next planning interval. We discuss how the proposed planner can avoid deadlock and we propose how it can be extended to a sensor-based planner. The proposed method has been implemented in V-REP for the NAO humanoid and successfully tested in various scenarios of increasing complexity.
2018
18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018
Humanoid; Walking; Control and Systems Engineering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Anytime Whole-Body Planning/Replanning for Humanoid Robots / Ferrari, Paolo; Cognetti, Marco; Oriolo, Giuseppe. - (2018), pp. 209-216. (Intervento presentato al convegno 18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018 tenutosi a Beijing; China) [10.1109/HUMANOIDS.2018.8624935].
File allegati a questo prodotto
File Dimensione Formato  
Ferrari_Anytime-Whole-Body_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1225583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact