A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a simple linear time algorithm that, given a maximal planar chordal graph, determines in linear time whether it contains an LCST or not, and produces one if it exists. We give an anal- ogous result for the case when the input graph is a maximal outerplanar graph.
A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs / Calamoneri, Tiziana; Dell'Orefice, Matteo; Monti, Angelo. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - 764:(2019), pp. 2-14. [10.1016/j.tcs.2018.02.025]
A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs
Tiziana Calamoneri;Matteo Dell’Orefice;Angelo Monti
2019
Abstract
A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a simple linear time algorithm that, given a maximal planar chordal graph, determines in linear time whether it contains an LCST or not, and produces one if it exists. We give an anal- ogous result for the case when the input graph is a maximal outerplanar graph.File | Dimensione | Formato | |
---|---|---|---|
Calamoneri_preprint_simple_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
462.84 kB
Formato
Adobe PDF
|
462.84 kB | Adobe PDF | |
Calamoneri_simple_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
595.6 kB
Formato
Adobe PDF
|
595.6 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.