A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a simple linear time algorithm that, given a maximal planar chordal graph, determines in linear time whether it contains an LCST or not, and produces one if it exists. We give an anal- ogous result for the case when the input graph is a maximal outerplanar graph.

A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs / Calamoneri, Tiziana; Dell'Orefice, Matteo; Monti, Angelo. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - 764:(2019), pp. 2-14. [10.1016/j.tcs.2018.02.025]

A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs

Tiziana Calamoneri;Matteo Dell’Orefice;Angelo Monti
2019

Abstract

A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G. The problem of determining whether a graph contains an LCST or not has been proved to be NP-complete, even if the graph is planar or chordal. The main result of this paper is a simple linear time algorithm that, given a maximal planar chordal graph, determines in linear time whether it contains an LCST or not, and produces one if it exists. We give an anal- ogous result for the case when the input graph is a maximal outerplanar graph.
2019
locally connected spanning tree; partial k trees; SC k-trees; 2-trees; chordal graphs; planar graphs
01 Pubblicazione su rivista::01a Articolo in rivista
A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs / Calamoneri, Tiziana; Dell'Orefice, Matteo; Monti, Angelo. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - 764:(2019), pp. 2-14. [10.1016/j.tcs.2018.02.025]
File allegati a questo prodotto
File Dimensione Formato  
Calamoneri_preprint_simple_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 462.84 kB
Formato Adobe PDF
462.84 kB Adobe PDF
Calamoneri_simple_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 595.6 kB
Formato Adobe PDF
595.6 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1196846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact