
A Simple Linear Time Algorithm
for the Locally Connected Spanning Tree Problem

on Maximal Planar Chordal Graphs I

Tiziana Calamoneria, Matteo Dell’Oreficea, Angelo Montia

aComputer Science Department,
“Sapienza” University of Rome, Italy

Abstract

A locally connected spanning tree (LCST) T of a graph G is a spanning tree
of G such that, for each node, its neighborhood in T induces a connected sub-
graph in G. The problem of determining whether a graph contains an LCST
or not has been proved to be NP-complete, even if the graph is planar or
chordal. The main result of this paper is a simple linear time algorithm that,
given a maximal planar chordal graph, determines in linear time whether it
contains an LCST or not, and produces one if it exists. We give an anal-
ogous result for the case when the input graph is a maximal outerplanar
graph.

Keywords: locally connected spanning tree, partial k trees, SC k-trees,
2-trees, chordal graphs, planar graphs.

1. Introduction

A locally connected spanning tree (LCST) T of a graph G is a spanning
tree of G such that for each node its neighborhood in T induces a connected
subgraph in G [3]. It is well known that an interconnection network can be
modeled as a graph and, in this context, the existence of such a spanning

IAn extended abstract of this paper has been presented at ICTCS 2016. The work
has been partially supported by the Italian Ministry of Education and University, PRIN
project ”AMANDA: Algorithmics for MAssive and Networked DAta” and by Sapienza
University of Rome.

Email addresses: calamo@di.uiroma1.it (Tiziana Calamoneri),
matteodellorefice@gmail.com (Matteo Dell’Orefice), monti@di.uiroma1.it (Angelo
Monti)

Preprint submitted to Theoretical Computer Science December 22, 2017

!"#$%&'()'&*&$(

%#+,'-(

!"#$%&'(

./$#*0'-(

!"#$%&'(

%1$2!/2%(

)&/"(

1*/2$3&'(

.)'1/(

!#0$&)".(
!#4

,1)&$5/2(

!1$!+'&$(

&$!(

67(84/$22.(
9:&;1:&'(#+/2$)'&*&$<(

67(=4/$22.(
9>)#''#*1&*(*2/?#$@.<(

)&$5&'((

!4/$22.(

Figure 1: The state of the art concerning the complexity of the LCST problem. The
problem is NP-complete on black classes and linearly solvable on grey classes. White
classes are studied in this paper, and for them a linear time algorithm is designed.

tree ensures, in case of site failures, effective communication among operative
sites as long as these failures are isolated.

Cai proved in [4] that the problem of determining whether a graph con-
tains an LCST (LCST problem) is NP-complete even when the input graph
is restricted to be planar or split (and, a fortiori, chordal). So, researchers
have looked for special classes of graphs for which the problem is polynomi-
ally solvable.

In particular, in [4] the problem has been proven to admit a linear so-
lution on directed path graphs, a superclass of interval graphs; this result
has been first generalized to the superclass of strongly chordal graphs [7]
and then further extended to doubly chordal graphs [10]. Moreover, in [8]
the authors present a linear time algorithm to solve the problem on circu-
lar arc graphs, a natural superclass of interval graphs. Finally, linear time
algorithms for the LCST problem on cographs and co-bipartite graphs are
provided in [10]. For a visual summary of the known results, see Figure 1.

2

Cai [4] left as an open problem to understand the complexity of the
LCST problem on maximal planar graphs. In this paper we consider the
subclass of maximal planar chordal graphs and give a simple linear time
algorithm to determine an LCST, if it exists. Notice that this class of graphs
is an interesting and well studied class, since it is equivalent to Apollonian
networks [1], and to SC 3-trees [9]. Moreover, we deal also with the related
class of maximal outerplanar graphs, that are equivalent to SC 2-trees [9].

In view of the equivalence of maximal planar chordal and maximal out-
erplanar graphs with SC 3- and SC 2-trees, respectively, and since these two
are subclasses of partial k-trees, we apply to them results by Courcelle [14]
and Borie et al. [15] to deduce that the LCST problem can be decided in lin-
ear time. Nevertheless, it is not immediate to deduce an explicit algorithm
finding an LCST. So, we exploit the strong structure of maximal outerplanar
and of maximal planar chordal graphs to deduce some properties leading us
to design two simple linear time algorithms for finding an LCST on these
classes.

The interest of this result lies in the importance to determine the exact
boundary between graph classes for which the problem is hard and graph
classes for which it can be polynomially solvable.

The rest of this paper is organized as follows: Section 2 is devoted to
recall some known notions and to state some preliminary results that will
be useful in the successive sections. In Section 3 we prove that the LCST
problem is decidable in linear time on the class of partial k-trees, for any
fixed k. Sections 4 and 5 are devoted to give simple linear time algorithms for
finding an LCST on SC 2- and SC 3-trees, respectively, if it exists. Finally,
Section 6 concludes the paper addressing some open problems.

2. Preliminaries

In this section we recall some notions, and state some preliminary lemmas
that will be useful in the next sections of the paper.

As already mentioned, the considered classes of graphs (i.e. maximal
outerplanar graphs and maximal planar chordal graphs) coincide with SC
2- and SC 3-trees graphs. We recall the definitions of k-tree, SC k-tree, and
partial k-tree; in view of their inclusion in the latter class, from now on, we
will use the name SC 2- and SC 3-trees respectively for maximal outerplanar
and maximal planar chordal graphs.

Definition 1. [9] Let k be a positive integer.

3

• The complete graph on k nodes is a k-tree; if G is a k-tree, and C is
a chosen k-clique of G, then the graph obtained by adding a new node
to G and connecting it to all nodes of C is a k-tree.

• If G is a k-tree with |V (G)| > k, and every k-clique has been chosen
at most once in its construction, then G is called simple-clique (SC)
k-tree.

• A spanning subgraph of a k-tree is a partial k-tree.

In this paper we deal with the two classes of SC 2-trees and SC 3-
trees. SC 2-trees coincide with maximal outerplanar graphs [9] while SC
3-trees coincide with Apollonian networks [1], and are in fact equivalent
to the intersection class of chordal and maximal planar graphs [9]. Hence,
these two classes represent interesting subclasses of both chordal and planar
graphs.

Definition 2. [5] Given a graph G = (V,E) and two non-adjacent nodes u
and v of V , a subset S ⊆ V \ {u, v} is an (u, v)-separator if the removal of
S from G separates u and v into distinct connected components.

Let S be an (u, v)-separator of G. S is a minimal (u, v)-separator if no
proper subset of S separates u from v. More generally, S is a minimal sepa-
rator if it is a minimal (u, v)-separator, for some pair (u, v) of non adjacent
nodes.

Given a set of nodes V ′ ⊆ V of a graph G, we denote by G[V ′] the
subgraph induced in G by the nodes in V ′.

We now give some properties of a minimal separator of an SC k-tree.

Lemma 1. Let G be an SC k-tree, and S be a minimal separator in G, then
the graph G[V \ S] has exactly two connected components AS and BS and
the two graphs G[AS ∪ S] and G[BS ∪ S] are SC k-trees.

Proof. Proceed by induction on the number n of nodes in G = (V,E). If
n = k + 1, then G is a (k + 1)-clique and the claim is trivially true because
no separator exists. Assume now that the claim is true for each SC k-tree
with less than n > k + 1 nodes and let G be an SC k-tree with n nodes. In
view of the recursive definition of the SC k-trees, there is a node t in G and
a k-clique K such that G′ = G[V \{t}] is an SC k-tree with n−1 nodes and
K is the set of neighbors of t in G. Note that the separators of G are all
the separators of G′ plus the separator K. Let S be a separator of G. Two
cases can arise.

4

• S is the k-clique K. In this case let AS = V \ (S ∪ {t}) and BS = {t}
and the claim follows since G[AS∪S] is the SC k-tree G′ and G[BS∪S]
is the SC k-tree given by the k-clique K.

• S is also a separator in G′. By the inductive hypothesis there exist
two sets A′S and B′S satisfying the claim in G′. Note that it cannot
be both A′S ∩ K 6= ∅ and B′S ∩ K 6= ∅ (otherwise S would not be a
separator). W.l.o.g. assume B′S ∩K = ∅ and consider AS = A′S ∪ {t}
and BS = B′S . Note that AS is a connected component in G (since A′S
is a connected component in G′ and t is connected to at least a node
in A′S). Moreover G[AS ∪ S] is the SC k-tree obtained connecting the
node t to the k-clique K in the SC k-tree G′[A′S ∪S] and G[BS ∪S] is
the SC k-tree G′[B′S ∪ S].

2

From now on, fixed a minimal separator S, we will continue to call AS

and BS the two connected components of G \ S.

In the following lemma we recall some simple properties of SC k-trees that
can be proved by induction on the number of nodes in G and that have been
stated either in [12] or in [11] for the more general class of k-trees.

Lemma 2. Let G be an SC k-tree, then

(i) G has (k + 1)-cliques but no (k + 2)-cliques,

(ii) every minimal separator of G is a k-clique,

(iii) G is a chordal graph,

(iv) For each k-clique K in G there exists a node t such that K∪{t} induces
a (k + 1)-clique in G.

Lemma 3. Let G be an SC k-tree, then for any minimal separator S in G
there are two nodes a and b, such that S is an (a, b)-separator; moreover
S ∪ {a} and S ∪ {b} are (k + 1)-cliques in G.

Proof. Proceed by induction on the number n of nodes in G. If n = k+ 1,
then G is a (k+1)-clique and the claim is trivially true because no separator
exists. Assume now that the claim is true for each SC k-tree with less than
n nodes and let G be an SC k-tree with n nodes. In view of the recursive
definition of the SC k-trees, there is a node a in G and a k-clique K such

5

that G′ = G − {a} is an SC k-tree with n − 1 nodes and K is the set of
neighbors of a in G. Note that K is a (a, b)-minimal separator for G where b
is a node in G′ connected to all the nodes in K (the existence of such a node
is ensured by item (iv) of Lemma 2). Thus the separator K of G satisfies
the claim. Moreover all the others separators in G are also separators in G′

thus the claim follows by inductive hypothesis. 2

We now recall the following generalization of line graphs introduced in
[6].

Definition 3. The k-line graph of a graph G, in short Lk(G), is defined as
a graph whose nodes are the k-cliques in G. Two distinct such nodes are
adjacent in the k-line graph if and only if they have k− 1 nodes in common
in G.

In the following, for a node X in Lk(G), with a small abuse of notation,
we will denote by X also the set of nodes of G that are in the k-clique
corresponding to X.

Lemma 4. Let G be an SC k-tree, then a k-clique S in G is a minimal
separator if and only if there exist two adjacent nodes X1 and X2 in Lk+1(G)
such that S = X1 ∩X2.

Proof. We prove the two implications separately.
(⇒) Since S is a minimal separator in G, by Lemma 3 there are in

G two nodes a and b such that S is an (a, b)-separator and S ∪ {a} and
S ∪ {b} are k+ 1-cliques in G. Let X1 and X2 be the two nodes in Lk+1(G)
corresponding to the k + 1-cliques S ∪ {a} and to S ∪ {b} respectively. By
definition of Lk+1(G), these nodes are adjacent and the claim follows.

(⇐) We will show that the k-clique S = X1 ∩ X2 in G is a minimal
(a, b)-separator where a = X1 \ S and b = X2 \ S.

Suppose, by contradiction, that a and b are connected in the subgraph
G′ induced by the nodes V \ S. Note that a and b not are adjacent in G
(otherwise we have in G a (k+2)-clique induced by nodes of X1∪X2 against
item (i) in Lemma 2) and let P =< a, t1, . . . ti, b >, with i ≥ 1, be a shortest
path from a to b in G′. We will prove that each node of P must be connected
to all the nodes in the set S, so leading to a contradiction since set {t1}∪X1

forms a (k + 2)-clique in G.
To prove that each node ti in P must be adjacent to all the nodes in

the set S, let us assume, by contradiction that there is a node tj in P and
a node u in S such that ti and u are not adjacent. Let t be the first node

6

adjacent to u we meet along the path P from tj to a and let t′ be the first
node adjacent to u we meet along the path P from ti to b. Now consider in
G the cycle consisting of the nodes in P from t to t′ and the node u. This
cycle contains at least 4 nodes (i.e. t, tj , t

′ and u) and is cordless (since P is
a minimal path from a to b). Thus we have a contradiction in view of item
(iii) in Lemma 2. 2

The k-line graphs have been used to obtain the following characterization
of SC k-trees:

Theorem 1. [9] A k-tree G is an SC k-tree if and only if the (k + 1)-line
graph Lk+1(G) of G is a tree.

An SC k-tree whose (k+1)-line graph Lk+1(G) is a path is called k-path.
Since our algorithms exploit the (k + 1)-line graph, we are interested

to output Lk+1(G) in linear time from an SC k-tree input graph G; this is
possible, as shown by the following result.

Lemma 5. Let G be an SC k-tree; then tree Lk+1(G) can be computed in
linear time.

Proof. A perfect elimination ordering (peo) of G is an order v1, v2 . . . vn
of its nodes such that the set Pred(vi) , 1 ≤ i ≤ n, of the nodes that are
adjacent to vi in G and that precede vi in the order, form a clique.
Rose and al. in [13] developed a method based on Lexicographic Breadth
First Search (lex-BFS that produces a peo for chordal graphs (and obviously
for SC k-trees) in linear time. Moreover in [12] Rose proved that the peo
produced with this method for k-tree (and obviously for SC k-trees) has
the property that the first k + 1 nodes in the order form a k + 1-clique
and |Pred(vi)| = k for each vi, k + 1 < i ≤ n. Once produced a peo
v1, v2 . . . vn with these properties it is easy to construct in linear time the
tree Lk+1(G). We start with a node X1 containing the nodes x1, x2, . . . xk+1.
Moreover we obtain the other nodes of Lk+1(G) starting from the nodes vi,
k + 1 < i ≤ n. More precisely for vi we create a node Xi containing the
nodes {vi}∪Pred(vj), where vj is the last predecessor of vi, and we connect
this new node Xi to the node Xj if j > k+ 1, to X1 otherwise. It is easy to
see that each of the n − k nodes of the resulting tree is a k + 1-clique and
that, for each edge XiXj of the tree ,it holds |Xi ∩Xj | = k (i.e. the tree is
the graph Lk+1(G)). 2

7

Given a graph G, and one of its spanning trees T , for each node v of
G, NT (v) represents the set of the nodes of G that are adjacent to v in
T ; these nodes will be called T -neighbors of v. The next lemma states a
necessary condition that an LCST of a SC k-tree satisfies. As we will see
later, Theorem 5 states the sufficiency of this condition for the case k = 3.

Lemma 6. Let G be an SC k-tree, k ≥ 2, S be one of its minimal separators
and T be an LCST in G. We have that:

(i) if T [S] contains an isolated node, then its T -neighbors completely lie
either in AS or in BS.

(ii) G[S] contains at least one edge of T .

Proof. Let x be an isolated node in T [S]. By contradiction, assume that
NT (x) has a non empty intersection both with AS and with BS . Let a and
b be the T -neighbors of x such that a ∈ AS and b ∈ BS ; since T is an
LCST, a and b must be connected in G by either an edge or a path not
passing through any other node of S, and this is a contradiction since S is
a separator.

In order to prove the second assertion, assume by contradiction that
subgraph G[S] does not contain any edge of T . By the first assertion, each
node in S has its T -neighbors either all in AS or all in BS . But in this case,
for each node a ∈ AS and b ∈ BS it cannot exists a path in T connecting a
to b. Thus T is not a spanning tree. 2

3. Expressibility in monadic second order logic

In addition to the results in [2] (showing that many NP-hard problems
can be linearly solved when restricted to partial k-trees), in this section
we prove that also the LCST problem can be decided in linear time on
partial k-trees, for every fixed k. This is a consequence of a milestone result
independently discovered by Courcelle [14] and Borie et al. [15].

The monadic second order logic (MSOL) of graphs is a powerful logic in
which several graph properties can be expressed. See [14] for more details.
Its syntax includes:

• all the propositional connectives ∧, ∨, ¬, ⇒, ⇔;

• variables for nodes v1, v2, ..., edges e1, e2, ..., sets of nodes V1, V2, ...,
and sets of edges E1, E2, ...;

8

• the quantifiers ∀ and ∃ applicable to variables;

• a binary relation inc(e1, v1), stating that edge e1 is incident to node
v1;

• the binary relations v1 ∈ V1, and e1 ∈ E1, for appropriate variables
v1, V1, e1, E1;

• binary relations for equality, =, for the four types of variables.

Theorem 2. [14] [15] Any property of graphs expressible in MSOL can be
decided in linear time on partial k-trees, for any fixed k.

The next theorem shows that the property of containing an LCST can
be expressed in MSOL.

Theorem 3. Let G be a graph. There exists an MSOL formula φ such that
G satisfies φ if and only if G contains an LCST.

Proof. We will denote with G[E1] the subgraph induced in G by the set
E1 ⊆ E(G). The proof follows the approach of [16], by first defining a
statement SpanningTree(E1), expressing the fact that E1 is the set of edges
of a spanning tree of G.

We observe that operators ∪ and ∩ can be easily expressed with the rules
of monadic second order logic so, in the following, in order not to overburden
the exposition, we use directly them instead of their expression.

We need to define the following basic expressions:

• v1v2 ∈ E1 := ¬(v1 = v2) ∧ (∃e1 ∈ E1)(inc(e1, v1) ∧ inc(e1, v2));

• V1 = N(v2, E1) := (∀v1)(v1 ∈ V1 ⇔ v1v2 ∈ E1),

stating that V1 is the set of nodes adjacent to v2 through an edge in
E1;

• E1 = Ind(V1) := (∀e1)(e1 ∈ E1 ⇔ (∃v1, v2 ∈ V1)(¬(v1 = v2) ∧
inc(e1, v1) ∧ inc(e1, v2))),

stating that E1 is the set of edges of the subgraph induced by V1.

• Part(V1, V2, V3) := V2 6= ∅ ∧ V3 6= ∅ ∧ (V1 = V2 ∪ V3) ∧ (V2 ∩ V3 = ∅),
V1 is partitioned by V2 and V3;

• V1 = Inc(E1) := (∀v1)(v1 ∈ V1 ⇔ (∃e1 ∈ E1)(inc(e1, v1))),

V1 is the set of nodes incident to edges in E1;

9

• E1 = Inc(v1) := (∀e1)(e1 ∈ E1 ⇔ inc(e1, v1)),

E1 is the set of edges incident in v1.

Given the above, we can state the connectedness of the subgraph induced
by a set of edges E1 by saying that however a bipartition of its nodes is
considered, there always is an edge crossing it:

Conn(E1) := (∀V1, V2)(Part(Inc(E1), V1, V2)⇒ (∃v1 ∈ V1, v2 ∈ V2)(v1v2 ∈ E1))

The subgraph induced by a set of edges E1 is 2-connected by definition if
it has at least three nodes, and whenever a node is removed, the remaining
graph is still connected:

Biconn(E1) := (∀v1)(Conn(E1 \ Inc(v1)))

∧ (∃v1, v2, v3 ∈ Inc(E1))(
∧

1≤i<j≤3
vi 6= vj)

The above allows us to express acyclicity of the subgraph induced by E1 by
negating the 2-connectedness of any subset of its nodes:

Acyclic(E1) := (∀V1 ⊆ Inc(E1))(¬Biconn(Ind(V1) ∩ E1))

And finally we can state that G[E1] is spanning tree of G with:

SpanningTree(E1) := Conn(E1) ∧Acyclic(E1) ∧ (∀v1)(v1 ∈ Inc(E1))

Hence, the fact that E1 induces a locally connected spanning tree in G can
be expressed as by definition:

LCST(E1) := SpanningTree(E1) ∧ (∀v1)(Conn(Ind(N(v1, E1))))

and the decisional problem is expressed simply as (∃E1)(LCST(E1)). 2

The following corollary is an immediate consequence of Theorems 2 and
3.

Corollary 1. The LCST problem can be decided in linear time on the class
of partial k-trees, for any fixed k.

10

However, as deep and interesting as it is, the result by Courcelle and
Borie et al. does not give any immediate intuition on why and how the
structure of these graphs can be exploited to solve the problem at hand.
Indeed, it is a useful tool to preliminarily get a feeling of the complexity of a
problem, but we feel that an explicit algorithm may provide more insight to
the reader not familiar with MSOL and its relationship with partial k-trees.

4. An Algorithm to Determine an LCST of a maximal outerplanar
graph

Cai [3] proved that a nontrivial graph contains an LCST if and only if
it contains a spanning 2-tree T such that T does not contain as induced
subgraph a 3-sun (shown in Figure 2). Thus, we have the following charac-
terization.

Figure 2: The 3-sun graph.

Corollary 2. An SC 2-tree G contains an LCST if and only if G does not
contain as induced subgraph a 3-sun.

Now we prove the following result:

Lemma 7. Let G be an SC 2-tree. Its 3-line graph L3(G) has nodes of
degree 3 if and only if G contains a 3-sun as induced subgraph.

Proof. If G contains a 3-sun, then there are three 3-cliques all having an
edge in common with the same (central) 3-clique, hence L3(G) has a node
of degree at least 3. Vice-versa let X = {x, y, z} be a node of degree 3 in
L3(G). Let Y1 = {x, y, a}, Y2 = {x, z, b} and Y3 = {y, z, c} be the three
neighbors of X, then the six nodes {x, y, z, a, b, c} induce a 3-sun in G. 2

Now, since an SC k-tree G is a k-path if and only if Lk+1(G) is a path,
from the above two results we have:

11

Corollary 3. An SC 2-tree G contains an LCST if and only if L3(G) is a
path.

Now we give a characterization of LCSTs of 2-paths. This characteri-
zation allows us to design an algorithm that finds an LCST of a 2-path in
linear time.

Lemma 8. Let G be a 2-path, and T be one of its spanning trees. T is an
LCST if and only if, for each minimal separator S = {x, y} of G the edge
xy is in T .

Proof. We prove the two implications separately.
(⇒) If T is an LCST, the claim immediately follows from property (ii)

in Lemma 6.
(⇐) Proceed by induction on the number n of nodes in G. If n = 3

the claim trivially holds, because no separator exists. If n > 3 there exists
at least a separator S = {x, y}. In view of Lemma 1 and by definition of
k-paths, G[AS ∪ S] and G[BS ∪ S] are 2-paths and hence they satisfy the
inductive hypothesis, implying that T [AS ∪ S] and T [BS ∪ S] are LCSTs.
Merging together T [AS ∪ S] and T [BS ∪ S] we get a tree T that is a LCST
because edge xy belongs to T . 2

From the above results it is easy to obtain a linear time algorithm (Al-
gorithm 1 below) that, given an n node SC 2-tree G, returns an LCST of G
if it exists, returns ’no’ otherwise.

Theorem 4. (Correctness and Complexity) Algorithm 1 determines an LCST
of a given SC 2-tree if and only if it exists and runs in linear time.

Proof. If L3(G) is not a path the algorithm, in agreement with Lemma 3,
correctly returns ”no”.

It remains to show that the tree T constructed by the algorithm visit-
ing the path L3(G) is an LCST of G. This easily follows noting that the
algorithm constructs the LCST T exploiting the characterization in Lemma
8 and selects all edges induced by each minimal separator of G. Note that,
after the selection in T of the n− 2 minimal separators of G, it remains to
connect to T the only two nodes of degree 2, z1 and zn−2, that occur in G.
The node z1 is connected in T to a node of the minimal separator X1 ∩X2

while the node zn−2 is connected in T to a node of of the minimal separator
Xn−3 ∩Xn−2. It is easy to see that the resulting spanning tree of G is an
LCST.

12

For what concerns the time complexity, observe that L3(G) can be com-
puted in linear time (cf. Lemma 5) and the same asymptotic time is sufficient
also to traverse the n− 2 nodes of path L3(G) to gather the edges of T . 2

Algorithm 1: Algorithm FindLCSTinSC2trees

Input: an n node SC 2-tree G
Output: an LCST of G if it exists, NO otherwise
Compute tree L3(G);
if L3(G) is not a path then

return NO;
end
Let X1, X2, . . . Xn−2 be a linear order of the nodes of the path L3(G);
T ← ∅;
if L3(G) consists of a single node X1 then

insert in T any two edges of the 3-clique X1;
return T ;

end
for i = 1 to n− 3 do

add to T the edge connecting the two nodes in the minimal
separator Xi ∩Xi+1;

end
Let Xj = {xj , yj , zj} for j ∈ {1, n− 2};
Let x1y1 be the edge in T for X1 ∩X2 and xn−3yn−3 be the edge in T
for Xn−3 ∩Xn−2;
Add to T the two edges z1x1 and zn−2xn−2;
return T .

5. An Algorithm to Determine an LCST of a maximal planar
chordal graph

In the previous section, we have seen that it is easy to determine an LCST
of an SC 2-tree G, if it exists, exploiting its L3(G). Unfortunately, when we
move to SC 3-trees, things seem to be not so easy anymore. Nevertheless,
we will show that it is possible to determine an LCST of an SC 3-tree G, if
it exists, exploiting its L4(G), in linear time. This is the aim of this section.

In the following, the graph 2K2 is the disjoint union of two copies of K2

(where K2 is the complete graph on two nodes).

13

Lemma 9. Let G be an SC 3-tree and T be one of its spanning trees. If,
for each minimal separator S = {x, y, z} of G, one of the following is true:

(i) T contains exactly two edges of G[S];

(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and
either NT (z) ⊆ AS or NT (z) ⊆ BS;

then, for each node X in L4(G) it holds T [X] 6= 2K2.

Proof. Suppose, by contradiction, that there exists a 4-cliqueX = {x, y, z, t}
in G = (V,E) such that T [X] = 2K2. This implies that, for each minimal
separator S ⊂ X of G, it holds (ii). Let S = {x, y, z} be any of these sep-
arators and let z be the isolated node in T [S]. Without loss of generality
let BS be the component of G[V \S] containing NT (z). In graph T [AS ∪S]
node z is hence isolated. The above reasoning applies to any other separator
in X. Thus the path in T connecting the two edges of the 2K2 must be in
X and this contradicts the assumption that T [X] = 2K2. 2

Lemma 10. Let G be an SC 3-tree and T be one of its spanning trees. If,
for each minimal separator S = {x, y, z} of G, the following is true:

(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and
either NT (z) ⊆ AS or NT (z) ⊆ BS;

then G is a 3-path and T is an LCST.

Proof. First we show that G is a 3-path. By contradiction assume that
tree L4(G) is not a path. Let X = {x, y, z, t} be a node of L4(G) with
three neighbors Y1, Y2 and Y3. Consider now the three minimal separators
Si = X ∩ Yi, 1 ≤ i ≤ 3 (cf. Lemma 4). In order to fix the ideas let t ∈ X
be the node in

⋂
i Yi and S1 = {x, y, t}, S2 = {x, z, t} and S3 = {z, y, t}.

In each graph T [Si], 1 ≤ i ≤ 3, there is a single isolated node, if this node
is t for all the three graphs, then xy, xz and yz are in T . Thus the set
{x, y, z} is a cycle in T , a contradiction. Hence there is a minimal separator
Si,1 ≤ i ≤ 3, such that t is not isolated in T [Si], w.l.o.g. let it be S1 and
let xt ∈ E(T). This implies that y is the only isolated node in T [S1], z is
the only isolated node in T [S2] and the edges xy, ty, xz and tz are not in
T . This in turn implies that yz is the only edge in T [S3]. Summarizing, we
have that the edges xt and yz form a 2K in the 4-clique X, a contradiction
to Lemma 9.

Now we show that T is an LCST. We proceed by induction on the number
n of nodes in the 3-path G = (V,E). If n = 4, then G is a 4-clique and

14

the claim is trivially true because any spanning tree of a 4-clique is locally
connected. Assume now that the claim is true for every 3-path with less
than n > 4 nodes and let G be a 3-path with n nodes. Let t be the last node
added to G in its recursive definition and consider the separator S = {x, y, z}
identified by the neighbors of t in G. Observe that G′ = G[V \ {t}] is a 3-
path with n − 1 nodes since L4(G′) can be obtained by L4(G) by cutting
the leaf containing t. Moreover, for all the separators of G′ (note that these
separators are also separators of G) T ′ = T [V \{t}] satisfies (ii) in G′. Since
T satisfies (ii) for the separator S in G, t cannot be adjacent in T to both
x and y (otherwise a cycle is introduced in a tree), so the degree of t in T is
at most 2. We will examine the two cases.

1. |NT (t)| = 1: T ′ is a spanning tree for G′ and, by inductive hypothesis,
it is an LCST of G′. Moreover, since T is connected it must be either
xt ∈ T or yt ∈ T (remember that S satisfies (ii)). W.l.o.g. assume
that xt ∈ T . For each u ∈ V , it holds

NT (u) =

{x} if u = t
NT ′(x) ∪ {t} if u = x
NT ′(u) otherwise

Now, using the fact that T ′ is an LNCS for G′ and that yt ∈ E and
y ∈ NT ′(x), it is easy to see that T is an LCST for G.

2. |NT (t)| = 2: Without loss of generality assume that NT (t) = {x, z}.
Note that NT (z) = {t} since S satisfies (ii) in T . Let a be a node
in G connected to all nodes in S (such a node there exists by Lemma
3). Since G is a 3-path, any induced 4-clique (in particular, K =
{a, x, y, z}) contains at most 2 minimal separators, so besides {x, y, z},
at most one among {x, y, a}, {x, z, a} and {y, z, a} is a minimal sepa-
rator contained in K. There are three cases to consider.

(a) S is the only minimal separator in K. In this case G has only
five nodes (the nodes {a, x, y, z, t}). The node a in T can be
connected only to x or to y.
In the first case (where ax is in T), we have NT (x) = {y, t, a}
and NT (t) = {x, z}. Moreover x and t are the only nodes in T
having degree greater than one. Thus we conclude that T is an
LCST by noting that ay, yt and xz are edges of G.
In the second case (where ay is in T), x, t and y are the only
nodes in T having degree greater then one and NT (x) = {y, t},
NT (t) = {x, z} and NT (y) = {x, a}. Thus again T is an LCST
by noting that yt, xz and xa are edges of G.

15

(b) S′ = {a, x, y} is a minimal separator in K. AS′ contains only t
and z and T ′ = T [BS′ ∪S′] is a spanning tree in G′ = G[BS′ ∪S′]
that satisfies (ii) on every minimal separator, hence -by inductive
hypothesis - G′ is a 3-path and T ′ is an LCST. Summarizing, for
each u ∈ V , it holds

NT (u) =

{z, x} if u = t
{t} if u = z
NT ′(x) ∪ {t} if u = x
NT ′(u) otherwise

Now, using that T ′ is an LCST of G′, zx ∈ E, y ∈ NT ′(x) and
yt ∈ E, it is easy to see that T is a LCST of G.

(c) S′ is a minimal separator in K and either S′ = {a, y, z} or
S′ = {a, x, z}. Assume first that S′ = {a, y, z}. Note that T ′

obtained by adding edge xz to T [V \ {t}] is a spanning tree of
G′ = G[V \ {t}] and it satisfies (ii). Thus, by inductive hypoth-
esis, T ′ is an LCST of G′. Note that S′ satisfies (ii) on T and
since NT (z) = {t} it must be ay ∈ E(T). Summarizing, for each
u ∈ V , it holds

NT (u) =

{z, x} if u = t
{t} if u = z
{y, t} if u = x
NT ′(u) otherwise

Now, using that T ′ is an LCST of G′, and zx and yt are edges of
G, it is easy to see that T is an LCST of G.
The reasoning is similar if we assume that the minimal separator
S′ is {a, x, z}. In this case we can consider the spanning tree T ′

of G′ obtained by adding the edge yz to T [V \ {t}].
2

We now prove a characterization that will allow us to design a linear
time algorithm to determine an LCST of an SC 3-tree.

Theorem 5. Let G be an SC 3-tree, and T be one of its spanning trees. T
is an LCST if and only if, for each minimal separator S = {x, y, z}, one of
the following is true:

(i) T contains exactly two edges of G[S];

(ii) T contains exactly one edge of G[S] (w.l.o.g. this edge is xy) and
either NT (z) ⊆ AS or NT (z) ⊆ BS.

16

Proof. We prove the two implications separately.
(⇒) Let T be an LCST, and let us prove that either (i) or (ii) hold on

S.
First, notice that from item (ii) of Lemma 2, G[S] is a 3-clique, so it

cannot contain three edges of T , otherwise a cycle would occur in T ; so, in
view of Lemma 6, G[S] contains either one or two edges of T . If it contains
exactly two edges of T , then (i) holds and we have done. If, on the contrary,
G[S] contains exactly one edge xy of T then, by Lemma 6, NT (z) has an
empty intersection either with AS or with BS , that is (ii) holds.

(⇐) Let us now assume that S satisfies either (i) or (ii), and let us prove
that T is an LCST. The proof proceeds by induction on the number n of
nodes of G. For n = 4 (the basis of the induction) G is a 4-clique and
each spanning tree of G is an LCST and the claim is trivially true since no
separator exists. Assume now that G has n > 4 nodes and the claim is true
for every SC 3-tree with less than n nodes. If all the minimal separators of
G satisfy (ii), by Lemma 10 we have that G is a 3-path and T is an LCST.

It remains to consider the case in which there exists a separator S̃ of G
that satisfies (i). Consider graphs G1 = G[AS̃ ∪ S̃] and G2 = G[BS̃ ∪ S̃] and

the spanning trees T1 = T [AS̃ ∪ S̃] of G1 and T2 = T [BS̃ ∪ S̃] of G2. In view
of Lemma 1, graphs G1 and G2 are SC 3-trees and each separator of one of
these two graphs is in fact a separator of G hence, for each separator S of
Gi, 1 ≤ i ≤ 2, the tree Ti satisfies either (i) or (ii). By inductive hypothesis,
it follows that T1 and T2 are LCSTs of G1 and G2, respectively. Moreover,
we have

NT (u) =

NT1(u) if u ∈ AS̃
NT2(u) if u ∈ BS̃

NT1(u) ∪NT2(u) if u ∈ S̃

For each u not in S̃, we already know that its T -neighbors are connected
in G \ {u} (since T1 is an LCST of G1 and T2 in an LCSTs of G2); for
each u in S̃, its T -neighbors are partially in AS̃ (and they are connected in

AS̃ ∪ S̃), partially in AS̃ (and they are connected in BS̃ ∪ S̃), and partially in

S̃ (through which all the T -neighbors of u are connected since S̃ is a 3-clique
in G). It follows that T is an LCST of G. 2

Definition 4. Let S = {x, y, z} be a minimal separator of an SC 3-tree G.
Let G′ be the graph obtained from G by substituting set BS with the single
node {b} connected to all the three nodes in S. A partial solution on AS ∪S
w.r.t. S, HAS∪S, is a spanning forest of AS ∪ S such that there exists an
LCST T of G′ such that HAs∪S = T [AS ∪ S].

17

In the following we will call simply H a partial solution when S and
AS ∪ S are clear from the context.

Theorem 5, characterizing LCSTs in SC 3-trees, suggests that partial
solutions fall in exactly three distinct categories, depending on how many
edges of H are induced in S, and depending on the presence or not of an
isolated node in H. Next definition formalizes this fact.

Definition 5. Let S = {x, y, z} be a minimal separator of an SC 3-tree G.
Let H be a partial solution on AS ∪ S w.r.t. S. We say that H has label:

• αx if yz is an edge of H and x is isolated in H;

• βx if xy and xz are both in H;

• γx if yz is an edge of H, xy and xz are not in H, and x is not isolated
in H.

Analogous definitions can be given for labels αy, βy and γy, and αz, βz and
γz.

Definition 6. Let S be a minimal separator in G, and assume |AS | = 1.
The canonical partial solutions of G[AS ∪ S] associated to label χv (with
χ ∈ {α, β, γ} and v ∈ S) are depicted below.

Figure 3: The three canonical partial solutions. The three outer nodes are in S, while the
central node is in AS .

We are now ready to describe the algorithm that, given an SC 3-tree,
determines an LCST if it has one. We highlight that, in order not to over-
burden the exposition, we focus on the decisional problem. It is not difficult,
given the information gathered in the decisional version of the algorithm, to
find the edges of the LCST, as will be explained later.

18

From now on, we assume L4(G) to be rooted in a degree 1 node, R.
For any node X 6= R, we denote by f(X) its parent, that is the first node
encountered on the unique path from X to R; by X̄ we denote the set of
nodes of L4(G) in the subtree rooted at X. To not clutter the exposition
we will sometimes denote with X̄ also the corresponding set of nodes in G,
that is {x ∈ V (G) : x ∈ Y and Y ∈ X̄}.

Since we established the equivalence between minimal separators of G
and edges of L4(G) (cf. Lemma 4), in the following we will identify a minimal
separator S = X∩f(X) of G with the corresponding edge Xf(X) of L4(G);
moreover, we define the set of labels of edge Xf(X) as L(Xf(X)) = {χv :
∃ a partial solution on X w.r.t. X ∩ f(X) with label χv}.

The very high level idea of the algorithm consists in traversing L4(G) in
post-order; when visiting a node X, we compute the set L(Xf(X)) of labels
using the sets of labels of the children of X, Y1, ..., Yc, which have already
been computed. This is done with the aim of extending the partial solutions
of Yi, combining them in a partial solution of X. It is clear that G contains
an LCST if and only if L(Y R) 6= ∅, where Y is the only child of root R.

Algorithm 2: Algorithm Compute-Labels

Input: An edge Xf(X) of L4(G)
Output: The set of labels L(Xf(X))
G′ ← G[X ∪ f(X) ∪

⋃c
i=1 Yi];

L(Xf(X))← ∅;
for each (χ1

v1 , ..., χ
c
vc) ∈ L(Y1X)× ...× L(YcX) do

Let Hi be the canonical partial solution of G′[Yi] associated to
χi
vi , i = 1, ..., c;

for each subset E′ ⊆ E(X) do
H ← (X ∪

⋃c
i=1 Yi, E

′ ∪
⋃c

i=1E(Hi));
if H is a partial solution of G′[X ∪

⋃c
i=1 Yi] w.r.t. separator

Xf(X) then
Add to L(Xf(X)) the label corresponding to H;

end

end

end
return L(Xf(X)).

We now focus on the issue of assigning to an edge Xf(X) its set of labels
L(Xf(X)). First of all, notice that if X is a leaf, then the partial solutions of
X are exactly the nine canonical partial solutions, so in this case L(Xf(X))

19

contains all nine labels, that is L(Xf(X)) = {χv|χ ∈ {α, β, γ}, v ∈ X ∩
f(X)}. Otherwise, assume for example that X has two children Y1, and
Y2. By brute force we test every pair of 2 labels, each one from the set
L(Y1X)×L(Y2X), that is the cartesian product of L(Y1X) and L(Y2X). We
“decode” these labels in the corresponding canonical partial solution, which
we combine, together with a subset of edges E′ of E(X), in a subgraph
H of G[X ∪ Y1 ∪ Y2]. If this subgraph is a partial solution of G[X ∪ Y1 ∪
Y2 ∪ f(X)] w.r.t. separator X ∩ f(X), then we add the corresponding label
to L(Xf(X)); the following algorithm does the job, and its correctness is
proved below.

Notice that, when c = 0, the cartesian product L(Y1X)× ...×L(YcX) is
by definition equal to the set containing the empty tuple {()}; so, when X is
a leaf, the external cycle is executed exactly once, the Hi’s do not exist, and
H = (X,E′) in every iteration of the inner cycle. Also, notice that when at
least one of the L(YiX)’s is empty, then L(Y1X)× ...× L(YcX) = ∅, so the
outer cycle is never executed, and the output L(Xf(X)) is the empty set.

Before proving the correctness of Algorithm 2, we highlight that its time
complexity is constant, since the cardinality of L(Y1X) × ... × L(YcX) is
always at most 93, there are a constant number of subsets of E(X), and the
“if” condition can be verified in constant time since G′ has size O(c) = O(1).
Notice that Algorithm 2 may be substituted by a constant size look-up table,
if one is interested in the overall efficiency of the algorithm (see Figure 5 in
Appendix).

The following lemma is needed in the proof of the correctness of algo-
rithm 2. Since it is an immediate consequence of the definition of partial
solution, its proof is omitted.

Lemma 11. Let G be a SC 3-tree, Xf(X) be an edge of L4(G). Let G′ =
G[(V \ X) ∪ X]. Assume G has a LCST T such that T [X] is a partial
solution with label χv. Then, G′ has a LCST T ′ such that T ′[X] is the
canonical partial solution associated to label χv.

Lemma 12. After the execution of Algorithm 2 on input Xf(X), L(Xf(X))
contains label χv, (χ ∈ {α, β, γ} and v ∈ X∩f(X)) if and only if there exists
a partial solution of G[X] having label χv.

Proof. (⇒) If X is a leaf, that is c = 0, then the canonical partial solution
on G[X] = G[X] corresponding to label χv satisfies the statement.

Else, assuming 1 ≤ c ≤ 3, let E′ be the selected subset of E(X) such
that H is a partial solution of G′[X ∪

⋃c
i=1 Yi] w.r.t. separator Xf(X), for

20

which label χv was added to L(Xf(X)). By structural induction, there are
partial solutions H i of G[Y i], having label χi

vi , i = 1, ..., c. By Lemma 11, if
(X,E′∪

⋃c
i=1E(H i)) was not a partial solution of G[X], then neither would

H be a partial solution of G′[X ∪
⋃c

i=1 Yi], a contradiction. Finally, notice
that G[X] has the same label of H, that is χv.

(⇐) If X is a leaf, then G[X] = G[X] admits all nine possible canonical
partial solutions. Since c = 0, the outer cycle is executed exactly once on
the empty tuple (), and the inner cycle will find a partial solution for each
possible label. Assume now that 1 ≤ c ≤ 3. Assume there exists a partial
solution H of G[X] with respect to separator Xf(X). Then, notice that
H[Y i] is a partial solution of G[Y i] with respect to separator YiX with label
χi
vi , so by structural induction L(YiX) contains label χi

vi , i = 1, ..., c. Let
Hi be the canonical partial solution of G[Yi] with respect to separator YiX.
Then, by Lemma 11, H = (X∪

⋃c
i=1 Yi, E

′∪
⋃c

i=1E(Hi)) is a partial solution
of G′[X ∪

⋃c
i=1 Yi] with respect to separator Xf(X), where E′ = E(H[X])

is found by brute force by the inner cycle, and the corresponding label (that
is the same as H) is added to L(Xf(X)). 2

We are ready to give the pseudocode of the algorithm deciding whether
an SC 3-tree has an LCST or not.

Algorithm 3: Algorithm Decide-LCSTonSC3-trees

Input: An n node SC 3-tree G
Output: YES if an LCST of G exists, NO otherwise
if n = 4 then

return YES;
end
Compute L4(G);
Root L4(G) in a degree 1 node R;
Let Y be the only child of R;
for each (χ1

v1 , ..., χ
c
vc) ∈ L(Y1X)× ...× L(YcX) do

L(Xf(X))← Compute-LabelsXf(X);
if L(Y R) 6= ∅ then

return NO;
else

return YES;
end

end

21

Theorem 6. (Correctness and Complexity) Algorithm 3 returns “yes” if
and only if the SC 3-tree in input has an LCST, in linear time.

Proof. If n = 4, then obviously any spanning tree of G is locally connected,
and the algorithm returns ”yes”. Otherwise, by Lemma 12, we have that
L(Y R) is nonempty if and only if there exists a partial solution H of G[Y]
with respect to the minimal separator Y R. It is easy to see that H can be
extended to a LCST of G adding a single edge.

Moreover, the algorithm is linear. Indeed, L4(G) can be computed in
linear time (cf. Lemma 5), and Algorithm 2 is called O(n) times, and, as
already noted, has constant cost. 2

In order not to overburden the exposition, we do not detail how to re-
construct an LCST from the labels assigned in the algorithm, so here we
will give only an overview. We can traverse again L4(G), this time in a
pre-order fashion; starting from the edge incident to the root, we arbitrarily
choose one label; this label implies a certain canonical partial solution, so we
add the corresponding edges to the current LCST. At the general iteration,
we proceed visiting the children of the current node having already chosen
a label of the separator corresponding to the edge connecting it with its
father; this label came up from precise labels on the edges connecting this
node to its children, so we are forced to choose exactly those labels, and we
add in the LCST the corresponding edges of G.

We conclude this section by presenting a complete example showing how
our algorithm works.

Example. Consider graph G in Figure 4.a, whose rooted L4(G) is de-
picted in Figure 4.b. Performing a post-order traversal of L4(G), we first
label edges S1 = {2, 3, 4} and S2 = {2, 4, 5} with all 9 labels.

When moving to label S3 = {3, 4, 5}, we construct L(S3) = {α3, α5, β3,
β4, β5, γ3, γ4, γ5}. Then, we conclude labeling S4 = {3, 5, 6} with L(S4) =
{α3, α5, α6, β3, β5, β6, γ3, γ5, γ6}.

Since we labeled the only edge coming out from the root of L4, we deduce
that G admits an LCST.

22

u u
u

u

4 6

5

3

u2 u7u8u
1

1 2 3 4
�
 �	 2 4 5 8

�
 �	
2 3 4 5
�
 �	
3 4 5 6
�
 �	
3 5 6 7
�
 �	

2 3 4 2 4 5

3 4 5

3 5 6

a b

Figure 4: Example of how algorithm Decision-LCSTonSC3-trees works.

6. Conclusions and Open Problems

Many open questions arise from this paper.

In [4], Cai posed as open problem the characterization of k-trees contain-
ing a 3-sun free spanning 2-tree (equivalently, an LCST). Exploiting results
by Courcelle [14] and Borie et al. [15], we proved that the LCST problem is
decidable in linear time on the class of partial k-trees, for a fixed k, by show-
ing that the problem is expressible in monadic second order logic of graphs.
This leads to a linear time decisional procedure effectively distinguishing
the partial k-trees containing an LCST from the other ones, nevertheless we
consider the problem still open, as a clean graph theoretical characterization
would be more satisfying and informative.

We have then given explicit linear time algorithms finding an LCST
(if it exists) on the interesting subclasses of maximal outerplanar graphs
(SC 2-trees), and maximal planar chordal graphs (SC 3-trees). The latter
result is a first attack to the open problem left in [4] requiring to establish
the complexity of the LCST problem on the wider class of maximal planar
graphs.

The approach we used for SC 3-trees is clearly generalizable to SC k-
trees, for k > 3. Of course, the complexity of these algorithms (one for each
k) would be linear in n and exponential in k. Indeed, it is neither practical
nor interesting to even attempt to give an explicit and detailed exposition for
the case k > 3, since all the complexity of the problem is already contained
and exemplified by the case k = 3. Nevertheless, we want to briefly discuss
the problem in the general case.

First of all, an extension of Theorem 5 would be needed, becoming:
Let G be a SC k-tree, and T be a spanning tree of G. T is locally

connected if and only if for every minimal separator S of G, and for every

23

x ∈ S:
NT (x) ∩ S = ∅ ⇒ NT (x) ⊆ AS or NT (x) ⊆ BS.

Accordingly, we would need to generalize the descriptions of the labels.
Recall that our labels are an encoding of a partial solution H found up
to a certain minimal separator S of the input graph, and devoid of all the
information about H which are not needed to proceed with the computation.
Explicitly, these labels should contain two pieces of information:

− E(H[S]), that is, the edges of the minimal separator S which the partial
solution contains (notice that |E(H[S])| > 1, and it is the edge set of a
forest);

− a partition of the set of the connected components of E(H[S]): in each
partition set those components which are all connected together through
the already computed portion of the partial solution H.

Notice that these forests necessarily contain at least one edge due to
the above extension of Theorem 5: since T is a tree, and it has to pass
through every separator, there must be at least one vertex v for each minimal
separator S such that NT (v)∩AS and NT (v)∩BS are not empty, and since
T is locally connected, NT (v) ∩ S is not empty.

Also extending Algorithm 2 is conceptually easy but laborious in prac-
tice: the criteria to join the generalized labels together, and thus increasing
the partial solution, are the same as for the case k = 3. So, for every k-tuple
of labels (each from one of the at most k children) it is necessary to check
(1) whether they acyclically overlap on the edges of the minimal separator
they share (first item of the list above is sufficient to decide this), and (2)
whether cycles are not created by their union outside the minimal separator
(and this condition can be checked using the second item).

A natural question to ask is how many labels there are for a fixed k.
Let Fk be the set of labeled forests on k vertices with at least one edge; let
Cf be the number of connected components of a forest f ∈ Fk. From the
discussion above, it follows that the number of labels needed are

∑
f∈Fk

BCf
,

where Bn denotes the n-th Bell number, the number of possible partitions
of a set of n elements.

Finally, a minor modification of this algorithm would allow the enumer-
ation of all LCSTs of an SC k-tree, still running in polynomial time, for
any fixed k. Indeed, the algorithm would have polynomial delay and the
number of LCSTs in an SC k-tree is upper bounded by nf(k), where f is
the number of possible labels. This follows from the fact that an SC k-tree
has at most n minimal separators, and that an LCST can behave in at most

24

f(k) different ways on a minimal separator.

7. Bibliography

[1] J.S. Andrade, H.J. Herrmann, R.F.S. Andrade, L.R. da Silva, Apol-
lonian Networks: Simultaneously Scale-Free, Small World, Euclidean,
Space Filling, and with Matching Graphs Phys. Rev. Lett. 94, 2005.
Erratum in Phys. Rev. Lett. 102, 2009.

[2] S. Arnborg, and A. Proskurowski, Linear Time Algorithms for NP-Hard
Problems Restricted to Partial k-trees. Discrete Applied Mathematics
23, 11–24, 1989.

[3] L. Cai, On spanning 2-trees in a graph. Discrete Applied Mathematics
74, 203–216, 1997.

[4] L. Cai, The complexity of the locally connected spanning tree problem.
Discrete Applied Mathematics 131, 63–75, 2003.

[5] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, 1980.

[6] V.B. Le, Perfect k-line graphs and k-total graphs, J. Graph Theory 17,
65–73, 1993.

[7] C.-C. Lin, G.J. Chang, G.-H. Chen, Locally connected spanning trees in
strongly chordal graphs and proper circular-arc graphs. Discrete Math-
ematics, 307(2),208–215, 2007.

[8] C.-C. Lin, G.-H. Chen, G.J. Chang, A linear-time algorithm for finding
locally connected spanning trees on circular-arc graphs. Algorithmica,
66(2), 369–396, 2013.

[9] L. Markenzon, C.M. Justel, and N. Paciornik, Subclasses of k-trees:
Characterization and recognition. Discrete Applied Mathematics 154(5),
818–825, 2006.

[10] B.S. Panda and D. Pradhan, Locally connected spanning trees in
cographs, complements of bipartite graphs and doubly chordal graphs.
Information Processing Letters, 110(23), 1067–1073, 2010.

[11] A. Proskurowski, Separating Subgraphs in k-trees: Cables and Cater-
pillars. Discrete Mathematics 49, 275–285, 1984.

25

[12] D.J. Rose, On simple characterizations of k-trees. Discrete Mathemat-
ics, 7, 317–322, 1974.

[13] D.J. Rose, R.E. Tarjan, G. Luker, Algoritmic aspects of vertex elimi-
nation on graphs, SIAM J. Comput. 5, 266–283, 1976.

[14] B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order
Logic - A Language-Theoretic Approach, Encyclopedia of mathematics
and its applications, Cambridge University Press, 138, 2012.

[15] R. B. Borie, P. R. Gary, C. A. Tovey, Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on
recursively constructed graph families, Algorithmica, , 7(1), 555–581,
1992.

[16] H. L. Bodlaender, F. V. Fomin, P. A. Golovach, Y. Otachi, E. J. van
Leeuwen, Parameterized Complexity of the Spanning Tree Congestion
Problem, Algorithmica, 64(1), 85–111, 2012.

26

Appendix

Table used in Algorithm Decide-LCSTonSC3-trees

label of {x, y, t} label of {x, z, t} label of {y, z, t} label of {x, y, z}
αx - - αx(+yz), βz(+xz, yz), γy(+zt, xz)

αy - - αy(+xz), βz(+xz, yz), γx(+yz)

αt - - βx(+xz, zt), βy(+yz, zt)

βx - - αz, βx(+xz), βy(+yz), γz(+tz)

βy - - αz, βx(+xz), βy(+yz), γz(+tz)

βt - - γy(+xz), γx(+yz)

γx - - γy(+xz), γx(+yx)

γy - - γy(+xz), γx(+yz),

γt - - αz, βx(+xz), βy(+yz)

αx αt - βz(+yz)

αx βz - γy
αt αx - βy(+yz)

αt βz - βx
αt γt - βx
βx αz - αz, βy(+yz)

βx γz - γz
βx βx - βx
βx βt - γz
βy αx - γz
βy αt - βx
βt αz - γx(+yz)

βt βx - γy
γy βx - γy
γt αt - βx

αx αt βy βz
αx βz βt γy
αt αx βz βy
αt βz αy βx
βx αz αt βy
βx βt αy γz
βy αx βt γz
βy αt αz βx
βt αz βy γx
βt βx αz γy

Figure 5: Table for the construction of the labels. Symbol ’-’ means that the corresponding
child is not present in L4. Notice that missing combinations do not lead to any feasible
label for separator {x, y, z}.

27

