A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dminand dmax, dmin≤ dmax, such that each node u∈V is uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if and only if dmin≤ dT(u, v) ≤ dmax, where dT(u, v) is the sum of the weights of the edges on the unique path PT(u, v) from u to v in T. Understanding which graph classes lie inside and which ones outside the PCG class is an important issue. Despite numerous efforts, a complete characterization of the PCG class is not known yet. In this paper we propose a new proof technique that allows us to show that some interesting classes of graphs have empty intersection with PCG. We demonstrate our technique by showing many graph classes that do not lie in PCG. As a side effect, we show a not pairwise compatibility planar graph with 8 nodes (i.e. C28), so improving the previously known result concerning the smallest planar graph known not to be PCG.

Graphs that are not pairwise compatible: A new proof technique (extended abstract) / Baiocchi, Pierluigi; Calamoneri, Tiziana; Monti, Angelo; Petreschi, Rossella. - 10979:(2018), pp. 39-51. (Intervento presentato al convegno 29th International Workshop on Combinatorial Algorithms, IWOCA 2018 tenutosi a Singapore) [10.1007/978-3-319-94667-2_4].

Graphs that are not pairwise compatible: A new proof technique (extended abstract)

Calamoneri, Tiziana;Monti, Angelo;Petreschi, Rossella
2018

Abstract

A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dminand dmax, dmin≤ dmax, such that each node u∈V is uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if and only if dmin≤ dT(u, v) ≤ dmax, where dT(u, v) is the sum of the weights of the edges on the unique path PT(u, v) from u to v in T. Understanding which graph classes lie inside and which ones outside the PCG class is an important issue. Despite numerous efforts, a complete characterization of the PCG class is not known yet. In this paper we propose a new proof technique that allows us to show that some interesting classes of graphs have empty intersection with PCG. We demonstrate our technique by showing many graph classes that do not lie in PCG. As a side effect, we show a not pairwise compatibility planar graph with 8 nodes (i.e. C28), so improving the previously known result concerning the smallest planar graph known not to be PCG.
2018
29th International Workshop on Combinatorial Algorithms, IWOCA 2018
Pairwise Compatibility Graphs (PCGs); PCG recognition problem; Phylogenetic tree reconstruction problem; Theoretical Computer Science; Computer Science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Graphs that are not pairwise compatible: A new proof technique (extended abstract) / Baiocchi, Pierluigi; Calamoneri, Tiziana; Monti, Angelo; Petreschi, Rossella. - 10979:(2018), pp. 39-51. (Intervento presentato al convegno 29th International Workshop on Combinatorial Algorithms, IWOCA 2018 tenutosi a Singapore) [10.1007/978-3-319-94667-2_4].
File allegati a questo prodotto
File Dimensione Formato  
Calamoneri_graphs_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 347.41 kB
Formato Adobe PDF
347.41 kB Adobe PDF
Calamoneri_Graphs_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 354.78 kB
Formato Adobe PDF
354.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1196775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact