Multi-Task prioritized controllers generate complex behaviors for humanoids that concurrently satisfy several tasks and constraints. In our previous work we automatically learned the task priorities that maximized the robot performance in whole-body reaching tasks, ensuring that the optimized priorities were leading to safe behaviors. Here, we take the opposite approach: we optimize the task trajectories for whole-body balancing tasks with switching contacts, ensuring that the optimized movements are safe and never violate any of the robot and problem constraints. We use (1+1)-CMA-ES with Constrained Covariance Adaptation as a constrained black box stochastic optimization algorithm, with an instance of (1+1)-CMA-ES for bootstrapping the search. We apply our learning framework to the prioritized whole-body torque controller of iCub, to optimize the robot's movement for standing up from a chair.

Safe trajectory optimization for whole-body motion of humanoids / Modugno, Valerio; Nava, Gabriele; Pucci, Daniele; Nori, Francesco; Oriolo, Giuseppe; Ivaldi, Serena. - STAMPA. - (2017), pp. 763-770. ((Intervento presentato al convegno 17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017 tenutosi a Birmingham, UK [10.1109/HUMANOIDS.2017.8246958].

Safe trajectory optimization for whole-body motion of humanoids

Modugno, Valerio;Oriolo, Giuseppe;
2017

Abstract

Multi-Task prioritized controllers generate complex behaviors for humanoids that concurrently satisfy several tasks and constraints. In our previous work we automatically learned the task priorities that maximized the robot performance in whole-body reaching tasks, ensuring that the optimized priorities were leading to safe behaviors. Here, we take the opposite approach: we optimize the task trajectories for whole-body balancing tasks with switching contacts, ensuring that the optimized movements are safe and never violate any of the robot and problem constraints. We use (1+1)-CMA-ES with Constrained Covariance Adaptation as a constrained black box stochastic optimization algorithm, with an instance of (1+1)-CMA-ES for bootstrapping the search. We apply our learning framework to the prioritized whole-body torque controller of iCub, to optimize the robot's movement for standing up from a chair.
9781538646786
978-1-5386-4679-3
File allegati a questo prodotto
File Dimensione Formato  
Modugno_Safe-trajectory-optimization_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Modugno_IEEE-RAS-Frontespizio-indice_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 92.05 kB
Formato Adobe PDF
92.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1115946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact