Microalgae are photoautotrophic microorganisms that can produce energy both by using sunlight, water and CO2 (phototrophic metabolism) and by using organic sources such as glucose (heterotrophic metabolism). Heterotrophic growth is a key factor in microalgae research, due to its increased productivity and the lower capital and operative costs compared to photoautotrophic growth in photobioreactors. Carbohydrate production from microalgae is usually investigated for the production of biofuels (e.g. bioethanol) by successive fermentation, but also other applications can be envisaged in biopolymers. In this work an increment in carbohydrate purity after lipid extraction was found. Protein hydrolysis for different microalgae strains (Scenedesmus sp. and Chlorella sp.) was investigated. Microalgae were cultivated under photoautotrophic or heterotrophic conditions, collecting biomass at the end of the growth. Biomass samples were dried or freeze dried and used for carbohydrate and lipid extraction tests. Lipid extraction was achieved using different organic solvents (methanol-chloroform and hexane-2propanol). Basic protein hydrolysis has been carried out testing different temperatures and NaOH concentrations values. Lipids were spectrophotometrically quantified, while residual biomass was saccharificated and the total amount of sugars was measured. Significant differences about the purity of extracted carbohydrates were found comparing dried with freeze dried biomass. However, not a very promising purification of carbohydrates was achieved after protein hydrolysis, asking for further analysis. © Copyright 2017, AIDIC Servizi S.r.l.
Microalgae cultivation for lipids and carbohydrates production / Visca, Andrea; Di Caprio, Fabrizio; Spinelli, Roberta; Altimari, Pietro; Cicci, Agnese; Iaquaniello, Gaetano; Toro, Luigi; Pagnanelli, Francesca. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - STAMPA. - 57:(2017), pp. 127-132. [10.3303/CET1757022]
Microalgae cultivation for lipids and carbohydrates production
Visca, Andrea;Di Caprio, Fabrizio
;SPINELLI, ROBERTA;Altimari, Pietro;Cicci, Agnese;Toro, Luigi;Pagnanelli, Francesca
2017
Abstract
Microalgae are photoautotrophic microorganisms that can produce energy both by using sunlight, water and CO2 (phototrophic metabolism) and by using organic sources such as glucose (heterotrophic metabolism). Heterotrophic growth is a key factor in microalgae research, due to its increased productivity and the lower capital and operative costs compared to photoautotrophic growth in photobioreactors. Carbohydrate production from microalgae is usually investigated for the production of biofuels (e.g. bioethanol) by successive fermentation, but also other applications can be envisaged in biopolymers. In this work an increment in carbohydrate purity after lipid extraction was found. Protein hydrolysis for different microalgae strains (Scenedesmus sp. and Chlorella sp.) was investigated. Microalgae were cultivated under photoautotrophic or heterotrophic conditions, collecting biomass at the end of the growth. Biomass samples were dried or freeze dried and used for carbohydrate and lipid extraction tests. Lipid extraction was achieved using different organic solvents (methanol-chloroform and hexane-2propanol). Basic protein hydrolysis has been carried out testing different temperatures and NaOH concentrations values. Lipids were spectrophotometrically quantified, while residual biomass was saccharificated and the total amount of sugars was measured. Significant differences about the purity of extracted carbohydrates were found comparing dried with freeze dried biomass. However, not a very promising purification of carbohydrates was achieved after protein hydrolysis, asking for further analysis. © Copyright 2017, AIDIC Servizi S.r.l.File | Dimensione | Formato | |
---|---|---|---|
Visca_Microalgae-cultivation-lipids_2017.pdf
accesso aperto
Note: https://www.cetjournal.it/index.php/cet/article/view/CET1757022
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
921.53 kB
Formato
Adobe PDF
|
921.53 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.