Hydrogen-rich compounds have been extensively studied both theoretically and experimentally in the quest for novel high-temperature superconductors. Reports on sulfur hydride attaining metallicity under pressure and exhibiting superconductivity at temperatures as high as 200 K have spurred an intense search for room-temperature superconductors in hydride materials. Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (TC) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work, the phase diagram of PHn (n = 1,2,3,4,5,6) was extensively explored by means of ab initio crystal structure predictions using the minima hopping method (MHM). The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1,2,3 display TC’s comparable to experiments, it remains uncertain if the measured values of TC can be fully attributed to a phase-pure compound of PHn.

Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure / Flores Livas, José A.; Amsler, Maximilian; Heil, Christoph; Sanna, Antonio; Boeri, Lilia; Profeta, Gianni; Wolverton, Chris; Goedecker, Stefan; Gross, E. K. U.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 93:2(2016). [10.1103/PhysRevB.93.020508]

Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

Flores Livas, José A.;BOERI, Lilia;PROFETA, GIANNI;
2016

Abstract

Hydrogen-rich compounds have been extensively studied both theoretically and experimentally in the quest for novel high-temperature superconductors. Reports on sulfur hydride attaining metallicity under pressure and exhibiting superconductivity at temperatures as high as 200 K have spurred an intense search for room-temperature superconductors in hydride materials. Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (TC) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work, the phase diagram of PHn (n = 1,2,3,4,5,6) was extensively explored by means of ab initio crystal structure predictions using the minima hopping method (MHM). The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1,2,3 display TC’s comparable to experiments, it remains uncertain if the measured values of TC can be fully attributed to a phase-pure compound of PHn.
2016
Condensed Matter Physics
01 Pubblicazione su rivista::01a Articolo in rivista
Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure / Flores Livas, José A.; Amsler, Maximilian; Heil, Christoph; Sanna, Antonio; Boeri, Lilia; Profeta, Gianni; Wolverton, Chris; Goedecker, Stefan; Gross, E. K. U.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 93:2(2016). [10.1103/PhysRevB.93.020508]
File allegati a questo prodotto
File Dimensione Formato  
Flores-Livas_Superconductivity in metastable phases_2016.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 849.16 kB
Formato Adobe PDF
849.16 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/972863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 109
social impact