We define and study spherical subgroups of finite type of a Kac-Moody group. In analogy with the standard theory of spherical varieties, we introduce a combinatorial object associated with such a subgroup, its homogeneous spherical datum, and we prove that it satisfies the same axioms as in the finite-dimensional case. Our main tool is a study of varieties that are spherical under the action of a connected reductive group L, and come equipped with a transitive action of a group containing L as a Levi subgroup.

Spherical subgroups of Kac-Moody groups and transitive actions on spherical varieties / Pezzini, Guido. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 312:(2017), pp. 680-736.

Spherical subgroups of Kac-Moody groups and transitive actions on spherical varieties

PEZZINI, Guido
2017

Abstract

We define and study spherical subgroups of finite type of a Kac-Moody group. In analogy with the standard theory of spherical varieties, we introduce a combinatorial object associated with such a subgroup, its homogeneous spherical datum, and we prove that it satisfies the same axioms as in the finite-dimensional case. Our main tool is a study of varieties that are spherical under the action of a connected reductive group L, and come equipped with a transitive action of a group containing L as a Levi subgroup.
File allegati a questo prodotto
File Dimensione Formato  
Pezzini_Spherical-subgroups_2017.pdf

embargo fino al 22/10/2022

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 608.2 kB
Formato Adobe PDF
608.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pezzini_preprint_Spherical-subgroups_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 575.7 kB
Formato Unknown
575.7 kB Unknown Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/968357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact