We present a method for estimating surface height directly from a single polarisation image simply by solving a large, sparse system of linear equations. To do so, we show how to express polarisation constraints as equations that are linear in the unknown depth. The ambiguity in the surface normal azimuth angle is resolved globally when the optimal surface height is reconstructed. Our method is applicable to objects with uniform albedo exhibiting diffuse and specular reflectance. We extend it to an uncalibrated scenario by demonstrating that the illumination (point source or first/second order spherical harmonics) can be estimated from the polarisation image, up to a binary convex/concave ambiguity. We believe that our method is the first monocular, passive shape-from-x technique that enables well-posed depth estimation with only a single, uncalibrated illumination condition. We present results on glossy objects, including in uncontrolled, outdoor illumination.

Linear depth estimation from an uncalibrated, monocular polarisation image / Smith, William A. P; Ramamoorthi, Ravi; Tozza, Silvia. - STAMPA. - 9912:(2016), pp. 109-125. (Intervento presentato al convegno 14th European Conference on Computer Vision tenutosi a Amsterdam, The Netherlands nel October 11–14, 2016) [10.1007/978-3-319-46484-8_7].

Linear depth estimation from an uncalibrated, monocular polarisation image

TOZZA, SILVIA
2016

Abstract

We present a method for estimating surface height directly from a single polarisation image simply by solving a large, sparse system of linear equations. To do so, we show how to express polarisation constraints as equations that are linear in the unknown depth. The ambiguity in the surface normal azimuth angle is resolved globally when the optimal surface height is reconstructed. Our method is applicable to objects with uniform albedo exhibiting diffuse and specular reflectance. We extend it to an uncalibrated scenario by demonstrating that the illumination (point source or first/second order spherical harmonics) can be estimated from the polarisation image, up to a binary convex/concave ambiguity. We believe that our method is the first monocular, passive shape-from-x technique that enables well-posed depth estimation with only a single, uncalibrated illumination condition. We present results on glossy objects, including in uncontrolled, outdoor illumination.
2016
14th European Conference on Computer Vision
Bas-relief ambiguity; polarisation; shape-from-x; theoretical computer science; computer science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Linear depth estimation from an uncalibrated, monocular polarisation image / Smith, William A. P; Ramamoorthi, Ravi; Tozza, Silvia. - STAMPA. - 9912:(2016), pp. 109-125. (Intervento presentato al convegno 14th European Conference on Computer Vision tenutosi a Amsterdam, The Netherlands nel October 11–14, 2016) [10.1007/978-3-319-46484-8_7].
File allegati a questo prodotto
File Dimensione Formato  
Smith_Linear-depth-estimation_2016.pdf

solo gestori archivio

Note: https://link.springer.com/chapter/10.1007/978-3-319-46484-8_7#enumeration
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 924.47 kB
Formato Adobe PDF
924.47 kB Adobe PDF   Contatta l'autore
Smith_Linear-depth-estimation-frontespizio_2016.pdf

solo gestori archivio

Note: https://link.springer.com/book/10.1007%2F978-3-319-46484-8?page=1#toc
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 176.15 kB
Formato Adobe PDF
176.15 kB Adobe PDF   Contatta l'autore
Smith_Linear-depth-estimation-Copertina_2016.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 306.84 kB
Formato Adobe PDF
306.84 kB Adobe PDF   Contatta l'autore
Smith_Linear-depth-estimation-BackMatter_2016.pdf

solo gestori archivio

Note: https://link.springer.com/book/10.1007%2F978-3-319-46484-8?page=2#toc
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 101.63 kB
Formato Adobe PDF
101.63 kB Adobe PDF   Contatta l'autore
Smith_Linear-depth-estimation-Supplemento_2016.pdf

solo gestori archivio

Note: https://static-content.springer.com/esm/chp%3A10.1007%2F978-3-319-46484-8_7/MediaObjects/419983_1_En_7_MOESM1_ESM.pdf
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 449.23 kB
Formato Adobe PDF
449.23 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/966270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 46
social impact