In this paper we investigate the validity and the consequences of the maximum principle for degenerate elliptic operators whose higher order term is the sum of k eigenvalues of the Hessian. In particular we shed some light on some very unusual phenomena due to the degeneracy of the operator. We prove moreover Lipschitz regularity results and boundary estimates under convexity assumptions on the domain. As a consequence we obtain the existence of solutions of the Dirichlet problem and of principal eigenfunctions.
A family of degenerate elliptic operators: maximum principle and its consequences / Birindelli, Isabella; Galise, Giulio; Hitoshi, Ishii. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 35:(2018), pp. 417-441. [10.1016/j.anihpc.2017.05.003]
A family of degenerate elliptic operators: maximum principle and its consequences
BIRINDELLI, Isabella;GALISE, GIULIO;
2018
Abstract
In this paper we investigate the validity and the consequences of the maximum principle for degenerate elliptic operators whose higher order term is the sum of k eigenvalues of the Hessian. In particular we shed some light on some very unusual phenomena due to the degeneracy of the operator. We prove moreover Lipschitz regularity results and boundary estimates under convexity assumptions on the domain. As a consequence we obtain the existence of solutions of the Dirichlet problem and of principal eigenfunctions.File | Dimensione | Formato | |
---|---|---|---|
Birindelli_A-family-of-degenerate-elliptic_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
451.84 kB
Formato
Adobe PDF
|
451.84 kB | Adobe PDF | Contatta l'autore |
Birindelli_preprint_A-family-of-degenerate-elliptic_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
329.68 kB
Formato
Adobe PDF
|
329.68 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.