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A FAMILY OF DEGENERATE ELLIPTIC OPERATORS: MAXIMUM

PRINCIPLE AND ITS CONSEQUENCES.

ISABEAU BIRINDELLI, GIULIO GALISE, HITOSHI ISHII

Abstract. In this paper we investigate the validity and the consequences of the maximum

principle for degenerate elliptic operators whose higher order term is the sum of k eigenvalues

of the Hessian. In particular we shed some light on some very unusual phenomena due to the

degeneracy of the operator. We prove moreover Lipschitz regularity results and boundary

estimates under convexity assumptions on the domain. As a consequence we obtain the

existence of solutions of the Dirichlet problem and of principal eigenfunctions.

1. Introduction

In this paper we shall study solutions of Dirichlet problem for degenerate elliptic operators

whose higher order term is given by some sort of “truncated Laplacian”, i.e.

P−
k (D2u) =

k∑

i=1

λi(D
2u) and P+

k (D2u) =

N∑

i=N−k+1

λi(D
2u),

where λ1(D
2u) ≤ λ2(D

2u) ≤ · · · ≤ λN (D2u) are the ordered eigenvalues of the Hessian of u,

which have lately been investigated in various contexts e.g. [1], [10, 11], [12], [18, 19], [28],

[29]. We are interested in the case N ≥ 2 and k < N since P−
N (D2u) = P+

N (D2u) = ∆u. In

the whole paper solutions are meant in the viscosity sense, see e.g. [14] and Definition 2.1.

Clearly, for any symmetric matrix X, P+
k (X) = −P−

k (−X) hence we will mainly state the

results for P−
k with obvious equivalents when the operator P+

k is considered. Such operators

are positively homogeneous of degree one and degenerate elliptic.

In the following we propose to consider the Dirichlet problem

(1.1)

{
P±
k (D2u) +H(x,∇u) + µu = f(x) in Ω

u = 0 on ∂Ω,
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where Ω is a bounded domain of RN and the Hamiltonian H ∈ C(Ω× R
N ;R) is assumed to

satisfy the structure condition:

(SC 1) ∃ b ∈ R+ s.t. |H(x, ξ)| ≤ b |ξ| ∀(x, ξ) ∈ Ω× R
N .

The prototype we have in mind is H(x,∇u) = b(x)|∇u| or H(x,∇u) = b(x) · ∇u with b(x)

bounded continuous function in Ω.

In particular we want to raise and partially answer the following questions, which are very

intertwined:

(1) Under which conditions do the operators P±
k (D2u) +H(x,∇u) + µu satisfy the max-

imum principle, be it weak or strong?

(2) What are the regularity of the solutions of the Dirichlet problem?

(3) Do the principal eigenvalues and corresponding eigenfunctions exist?

In order to be more specific, let us describe what we call maximum or minimum principle in

the sense of the sign propagation property.

Definition 1.1. F satisfies the maximum or weak maximum principle in Ω if

F [u] ≥ 0 in Ω, lim sup
x→∂Ω

u ≤ 0 =⇒ u ≤ 0 in Ω.

It satisfies the strong maximum principle if

F [u] ≥ 0 in Ω, u ≤ 0 in Ω =⇒ either u < 0 or u ≡ 0.

Respectively, F satisfies the minimum or weak minimum principle in Ω if

F [u] ≤ 0 in Ω, lim inf
x→∂Ω

u ≥ 0 =⇒ u ≥ 0 in Ω.

It satisfies the strong minimum principle if

F [u] ≤ 0 in Ω, u ≥ 0 in Ω =⇒ either u > 0 or u ≡ 0.

Of course when F is odd then the notions of maximum and minimum principle are equivalent,

but here we shall see that they differ quite a lot.

Just to give a flavour of the kind of results that we shall obtain, let us begin by saying that for

any k < N , the Hopf Lemma, the Harnack inequality and the strong minimum principle do

not hold in general for solutions of (1.1). On the other hand, if bR ≤ k, the weak minimum

principle holds in any domain Ω ⊂ BR. For subsolutions, instead, the strong maximum

principle will be a consequence of the Hopf Lemma. The condition bR ≤ k has been shown to

be optimal in a previous work of the second named author with Vitolo [16]. Other phenomena

which are unusual with respect to the uniformly elliptic case will be described in subsection

4.2.

Historically, the maximum (or minimum) principle for degenerate elliptic operators has been

mostly studied when the degeneracy depends on the points where the operator acts, e.g.

Lu = tr(A(x)D2u) with A ≥ 0
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or

Lu =

k∑

i=1

X2
i u,

where the Xi are vector fields that may fail to generate the whole space, see e.g. the funda-

mental works of Bony [8] or Kohn and Nirenberg [23]. We shall not even try to enumerate

the results in these sub-elliptic contexts.

Other class of degenerate operators are the quasilinear operators such as the p-Laplacian or

the ∞-Laplacian, whose degeneracy depends on the solution itself, but more precisely on

the gradient of the solution. Here also, for the truncated Laplacian, the “direction”of the

degeneracy depends on the solution but it depends on the eigenvectors of the Hessian of the

solution. Let us furthermore remark that these operators are neither linear nor variational.

The operators P±
k have been initially introduced in connection with Riemannian manifolds.

In particular when the manifolds are k convex this was studied by Sha in [28], the case of

partially positive curvature was seen by Wu in [29]. Later they can be found in [14, Example

1.8], as examples of fully nonlinear degenerate elliptic operators, and [1], where Ambrosio and

Soner have investigated the mean curvature flow with arbitrary codimension through a level

set approach. More recently, in a PDE context, we wish to recall the works of Harvey and

Lawson [18, 19] that have given a new geometric interpretation of solutions, while Caffarelli,

Li and Nirenberg in [10, 11] in their study of degenerate elliptic equations, give some results

concerning removable singularities along smooth manifolds for Dirichlet problems associated

to P−
k . See also [2] for the extended version of the maximum principle and [12] in the case of

entire solutions.

In order to describe the results contained in this work let us introduce the generalized principal

eigenvalues à la Berestycki, Nirenberg, Varadhan [5]. For the following equation

(1.2) P−
k (D2u) +H(x,∇u) + µu = 0 in Ω,

we define the following “generalized principal eigenvalues”:

µ+k = sup{µ ∈ R : ∃w > 0 in Ω a supersolution of (1.2)},

µ+k = sup{µ ∈ R : ∃w > 0 in Ω a supersolution of (1.2)}

and

µ−k = sup{µ ∈ R : ∃w < 0 in Ω a subsolution of (1.2)},

µ−k = sup{µ ∈ R : ∃w < 0 in Ω a subsolution of (1.2)}.

When we say that w is a supersolution of (1.2) and w > 0 in Ω as in the definition of

µ+k above, it is implicit that the function w is defined, as a real-valued function, and lower

semicontinuous in Ω. Similar assumptions are made in the definition of µ−k above.

It is immediate that µ±k ≤ µ±k and also, using (2.2), that µ−k ≤ µ+k and µ−k ≤ µ+k if H is odd

in the gradient. What we prove in section 4 is that these values are thresholds for the validity

of the weak maximum or the weak minimum principle, precisely below µ−k and below µ+k the

minimum principle and respectively the maximum principle holds.
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In order to be able to reach the values µ+k and µ−k , which are the standard upper bounds

in the uniformly elliptic case, we shall need some further conditions. Precisely, if Ω ⊂ BR

with bR < k the maximum principle holds for any µ since, we prove in Proposition 4.3 that

µ+k = µ+k = +∞. For the minimum principle the situation is more delicate. The weak

minimum principle holds up to µ−k if, beside the above condition on R, we shall require that

Ω satisfies a convexity type assumption, precisely that it is the intersection of a family of

balls of same radius; in that case we say that Ω is a “hula hoop”domain. In particular a C2

strictly convex domain is a hula hoop domain, see Proposition 2.7 .

Under these hypotheses, in Proposition 4.5, we prove that for µ = µ−k the minimum principle

does not hold. This implies also that µ−k = µ−k , see Theorem 4.4; let us emphasize that

the hula hoop condition does not imply the regularity of the domain e.g. the intersection of

two balls of same radius. In general the question of whether µ−k and µ−k coincide is an open

problem.

In the recent paper [4] that had a great influence on this research, Berestycki, Capuzzo Dol-

cetta, Porretta and Rossi have studied the validity of the maximum principle for degenerate

elliptic operators. For that aim they introduce another value

µ∗ := sup{µ ∈ R : ∃Ω′ ⊃ Ω, w > 0 in Ω′, F [u] + µu ≤ 0 in Ω′}.

Observe that for F [u] := P−
k (D2u) + H(x,∇u), the value µ∗ ≤ µ+k . In [4] they prove that

F [·] + µ· satisfies the maximum principle in Ω in the viscosity sense if and only if µ < µ∗.

In section 4 of that paper, they also study the equality between the different definitions of

generalized principal eigenvalues, but the sufficient conditions require that the domain be

regular.

The existence of solutions for Dirichlet problems are proved in Section 5 when Ω is a hula hoop

domain. When the operators concern P−
k for general k, the existence and uniqueness is given

provided that the Hamiltonian is Lipschitz in the gradient variable and µ < µ−k,b ≤ µ−k , where

µ−k,b refers to the generalized principal eigenvalue of P−
k (D2·) − b|∇ · | with b the Lipschitz

constant of H. Instead, thanks to the Lipschitz estimates, for k = 1 the existence is given

without the extra condition on the Hamiltonian and for any µ < µ−1 . In the particular case

f ≤ 0 the existence holds for any µ. Some questions concerning existence remain open, e.g.

does the existence of solutions holds when µ > µ−1 for a more general class of forcing terms

f? is the hula hoop condition optimal?

Of course a natural question is whether these generalized principal eigenvalues correspond to

an eigenfunction. In the case of uniformly elliptic fully nonlinear operators, this has been

proved to be the case in different context (see [3, 6, 9, 20, 24, 27]). We are able to give a

positive answer to this question when k = 1 and Ω is a hula hoop domain. This will be

somehow an application of the global Lipschitz results that are proved in section 3. The proof

of the Lipschitz regularity is extremely sleek.

It is quite clear that there are a number of open problems. Maybe the most important one is

whether the global Lipschitz or Hölder regularity of the solutions holds also for k ≥ 2. This
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would in particular lead to the existence of the principal eigenfunction in that case as well.

On one hand it is not surprising that the case of P−
1 is simpler since, when the lower order

term is zero, solutions of P−
1 (D2u) = f(x) are semiconvex. On the other hand, it is also the

most degenerate of these operators, so it would be very surprising that the case k = 1 and

the case k = N give rise to smooth solutions and that it is not the case for the values of k in

between.

Still concerning the regularity, let us recall that in the context of convex analysis, Oberman

and Silvestre in [25] prove the C1,α regularity of solutions of

P−
1 (D2u) = 0 in Ω, u(x) = g(x) on ∂Ω,

under some regularity condition on g. The solution of this problem is the convex envelope,

of given boundary data g. They proved that the solutions of the Dirichlet problem with C1,γ

boundary data, are C1,γ in the interior. When f is not zero and there is a first order term

the question of the Hölder regularity of the gradient is to our knowledge completely open.

In the next section, beside recalling a few standard facts, we give estimates near the boundary

that will be crucial along the paper. In section 3, using those bounds, we prove global Lipschitz

regularity of solutions when k = 1. Section 4 is divided into two subsections, in the first one

we prove that the generalized principal eigenvalues bound the validity of the maximum and

minimum principle; in the second subsection we describe some unusual phenomena. Section

5 is dedicated to the existence of solutions for the Dirichlet problem and existence of the

principal eigenfunction. In the last section we prove that C2 strictly convex domains are

“hula hoop domains”.

2. Barrier functions, bounds, Hopf lemma

For convenience of the reader, we begin this section by recalling the definition of viscosity

solution and some facts concerning the operators P−
k and P+

k .

Let us denote by S
N the set of N ×N real symmetric matrices, endowed with the standard

partial order: X ≤ Y in S
N if 〈Xξ, ξ〉 ≤ 〈Y ξ, ξ〉 ∀ξ ∈ R

N . The identity matrix will be denoted

by I and the trace of X ∈ S
N by tr(X). A continuous mapping F : Ω×R×R

N × S
N 7→ R is

degenerate elliptic if it is nondecreasing in the matrix argument: for any (x, r, ξ) ∈ Ω×R×R
N

(2.1) F (x, r, ξ,X) ≤ F (x, r, ξ, Y ) whenever X ≤ Y.

Definition 2.1. u is a viscosity supersolution of

F (x, u,∇u,D2u) = 0 in Ω

if it is lower semicontinuous in Ω and for any x in Ω, for any C2 function ϕ touching u from

below at x then

F (x, u,∇ϕ(x),D2ϕ(x)) ≤ 0.

Analogously, u is a viscosity subsolution if it is upper semicontinuous in Ω and for any x in

Ω, for any C2 function ϕ touching u from above at x then

F (x, u,∇ϕ(x),D2ϕ(x)) ≥ 0.
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A continuous function u is a viscosity solution if it is both a subsolution and a supersolution.

If X ≤ Y in S
N , the Courant’s min-max representation formula for eigenvalues implies that

λi(X) ≤ λi(Y ), for i = 1, . . . , N . In particular the operators P−
k and P+

k satisfy (2.1).

Moreover the representation formula

P−
k (X) = min

{
k∑

i=1

〈Xξi, ξi〉 | ξi ∈ R
N and 〈ξi, ξj〉 = δij , for i, j = 1, . . . , k

}
,

see [10, Lemma 8.1], allows us to obtain easily the inequalities

(2.2) P−
k (Y ) ≤ P±

k (X + Y )− P±
k (X) ≤ P+

k (Y )

and deduce the superadditivity (subadditivity) property of P−
k (P+

k ).

We will consider a couple of radial barrier functions in the paper and hence we recall the

following elementary Lemma that can be found e.g. in [15].

Lemma 2.2. Let η ∈ C2([0, b]), with 0 < b such that η′(0) = 0. Set v(x) = η(|x|) in Bb.

Then, v is C2(Bb) and, for x 6= 0, the eigenvalues of D2v(x) are η′′(|x|) and η′(|x|)/|x|, and

the (algebraic) multiplicity of η′(|x|)/|x| is equal to N − 1, if η′′(|x|) 6= η′(|x|)/|x|, and N

otherwise. For x = 0, they are all equal to η′′(|x|).

We start with a computation that leads to a remark on the Hopf lemma for the operator

P−
k (D2·) +H(x,∇·). In BR = BR(0), the ball of radius R and center the origin, let

(2.3) w(x) = (R2 − |x|2)γ with γ > 1.

By Lemma 2.2 or a straightforward computation the eigenvalues of the Hessian of w are

λi(D
2w) = −2γ(R2 − |x|2)γ−1 < 0 for i = 1, . . . , N − 1

while

λN (D2w) = −2γ(R2 − |x|2)γ−1 + 4|x|2γ(γ − 1)(R2 − |x|2)γ−2

= 2γ(R2 − |x|2)γ−2((2(γ − 1) + 1)|x|2 −R2).

In this way, from (SC 1)

P−
k (D2w) +H(x,∇w) ≤ P−

k (D2w) + b |∇w|

= 2γ(R2 − |x|2)γ−1 (b|x| − k) ≤ 0 if bR ≤ k,

so that w is a positive supersolution, for k < N , of P−
k (D2w) +H(x,∇w) = 0 in BR, which

is zero on the boundary and such that the outer normal derivative ∂νw(x) = 0 for x on ∂BR.

This proves the following remark.

Remark 2.3. For any k < N , the Hopf lemma does not hold in general for supersolutions

of P−
k (D2·) +H(x,∇·), i.e. there exists a positive supersolution in BR which is zero together

with its gradient at the boundary.
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Moreover the extension

w̄(x) =

{
w(x) if |x| < R

0 otherwise

yields, for γ > 2, a counterexample of C2-function invalidating the strong minimum principle.

In [16] the authors dealt with the removable singularities issue for second order elliptic opera-

tors whose principal part is a weighted version of P±
k . By means of an explicit counterexample

they deduced the sharpness of the condition bR ≤ k < N for the validity of the weak maxi-

mum/minimum principle in the cases H(x,∇u) = ±b|∇u|. For the reader’s convenience we

report the proof in the case of the minimum principle. Assume bR ≤ k and by contradiction

let v be a lower semicontinuous function such that


P−
k (D2v) +H(x,∇v) ≤ 0 in Ω ⊂ BR

lim inf
x→∂Ω

v(x) ≥ 0

and v(x0) < 0 for some x0 ∈ Ω.

Set ϕ(x) = ε|x|2 and 0 < ε < − v(x0)
R2 . Since

lim inf
x→∂Ω

(v − ϕ)(x) ≥ −εR2 > v(x0) ≥ (v − ϕ)(x0)

then

inf
x∈Ω

(v − ϕ)(x) = (v − ϕ)(xε), xε ∈ Ω.

Using ϕ as test function we get

0 ≥ P−
k (D2ϕ(xε)) +H(xε,∇ϕ(xε))

≥ 2εk − 2εb|xε|

> 2ε(k − bR)

a contradiction. For the sharpness of the condition see Example 4.9.

Summarizing we can assert that for H fulfilling (SC 1)

Proposition 2.4. P−
k (D2·)+H(x,∇·) does not satisfy the strong minimum principle in any

bounded domain Ω.

On the other hand the weak minimum principle holds true in Ω ⊆ BR if bR ≤ k and the

condition bR ≤ k is sharp in the case H(x,∇u) = −b|∇u|.

For later purposes we need to compare the distance function to the boundary of Ω i.e. d(x) =

inf
y∈∂Ω

|y − x| with subsolutions of (1.1). This is the content of the next propositions.

Proposition 2.5 (Hopf for subsolutions). Let Ω be a bounded C2-domain and let u satisfy
{

P−
k (D2u) +H(x,∇u) ≥ 0 in Ω

u < 0 in Ω.

Then there exists a positive constant C = C(Ω, u, k, b) such that

u(x) ≤ −Cd(x).
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Proof. The proof is quite standard. We report it for the sake of completeness. The conditions

on Ω imply the existence of a positive constant δ, depending on Ω, such that for any x ∈ Ωδ =

{x ∈ Ω | d(x) < δ} there are a unique y ∈ ∂Ω for which d(x) = |y − x| and a ball B2δ(y) ⊂ Ω

such that B2δ(y) ∩
(
R
N\Ω

)
= {y} (see [17, Lemma 14.16] for details).

Let us fix an arbitrary x0 ∈ Ωδ and consider the smooth negative radial function

v(x) = β
(
e−2αδ − e−α|x−y0|

)

in the annular region A = B2δ(y0)\Bδ(y0). For α >
(
k−1
δ + b

)
and β =

supΩ\Ωδ
u

(e−2αδ − e−αδ)
, a

direct calculation (or Lemma 2.2) yields

P−
k (D2v(x)) +H(x,∇v(x)) ≤ P−

k (D2v(x)) + b |∇v(x)|

= αβe−α|x−y0|

(
k − 1

|x− y0|
+ b− α

)
< 0 in A

and

lim sup
x→∂A

(u− v)(x) ≤ 0.

Using the comparison principle between a classical strict supersolution and a viscosity subso-

lution, we get

u(x0) ≤ v(x0) = β
(
e−α|y0−y0| − e−α|x0−y0|

)
≤ −αβe−2αδd(x0).

Moreover since max
Ω\Ωδ

u(x)

d(x)
< 0 we conclude by taking C small enough. �

Remark 2.6. Standard procedures allow us to deduce from the above computation that the

strong maximum principle holds for P−
k (D2·) +H(x,∇·) + µ· for any µ ∈ R.

In Proposition 2.8, we shall prove that for any γ ∈ (0, 1) and any subsolution u of P−
1 (D2u)+

H(x,∇u) = f(x) in Ω, the ratio u(x)
d(x)γ is bounded from above by a constant C, without

requiring further assumptions on Ω. The constant C depends in particular on γ and blows

up for γ → 1. In order to obtain a similar bound with γ = 1 and in the general case of

subsolutions of the equation (1.1), we restrict to convex domains Ω satisfying the following

assumption: there exist R > 0 and Y ⊂ R
N , depending on Ω, such that

(2.4) Ω =
⋂

y∈Y

BR(y).

For any R > 0 we define the class CR of such domains, i.e.

CR :=
{
Ω ⊂ R

N : representation formula (2.4) holds
}
, and set C =

⋃

R>0

CR.

The class C includes the set of bounded domains with C2-boundary which are strictly convex

in the sense that all the principal curvatures of the surface ∂Ω are positive everywhere. Indeed,

we shall give, in section 6, the proof of the following
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Proposition 2.7. Let Ω be a bounded domain with C2-boundary. Let κi(x) denote the prin-

cipal curvatures of ∂Ω at x for i = 1, . . . , N − 1, set

κ = min{κi(x) : i = 1, . . . , N − 1, x ∈ ∂Ω},

and assume that κ > 0. If R ≥ 1/κ, then Ω ∈ CR.

By means of (2.4) we show that the distance function d(x) is an upper barrier for any subso-

lutions of (1.1).

Proposition 2.8. Let m be a positive constant and let u satisfy
{

P−
1 (D2u) +H(x,∇u) ≥ −m in Ω

u ≤ 0 on ∂Ω.

Then for any γ ∈ (0, 1) there exists C = C(γ, b,m, ‖u+‖∞) such that

u(x) ≤ Cd(x)γ .

Let R > 0, Ω ∈ CR and u be a solution of
{

P+
k (D2u) +H(x,∇u) ≥ −m in Ω

u ≤ 0 on ∂Ω.

If H satisfies (SC 1) and bR < k then there exists C = C(Ω, b, k,m) such that

(2.5) u(x) ≤ Cd(x).

Proof. Let Ωδ = {x ∈ Ω | d(x) < δ} with

(2.6) δ = min

(
1− γ

2b
,

(
γ(1− γ)

4m

∥∥u+
∥∥
∞

) 1

2

)

and without loss of generality we may assume u+ 6≡ 0. For x0 ∈ Ωδ, take y0 ∈ ∂Ω such that

d(x0) = |x0 − y0| and consider the function v(x) = C|x− y0|
γ , where C =

‖u+‖
∞

δγ . Then v(x)

satisfies in Bδ(y0) ∩Ω

P−
1 (D2v(x)) +H(x,∇v(x)) ≤ Cγ|x− y0|

γ−2 (γ − 1 + b|x− y0|)

≤ −Cγ
1− γ

2
δγ−2 < −m.

Moreover

u(x) ≤ v(x) for any x ∈ ∂(Bδ(y0) ∩ Ω)

and by comparison u(x0) ≤ v(x0) = Cd(x0)
γ . Since x0 is arbitrary we obtain the desired

inequality u(x) ≤ Cd(x)γ in Ωδ and the same conclusion is still true in Ω\Ωδ by the choice of

the constant C.

For the second inequality, fix any y ∈ Y and consider the function vy(x) =M(R2 − |x− y|2),

where M = m
(k−bR) . Note that vy(x) ≥ 0 for all x ∈ BR(y) and hence vy(x) ≥ 0 in Ω. Then

P+
k (D2vy(x)) +H(x,∇vy(x)) ≤ 2M(−k + b|x− y|)

≤ −2M(k − bR) < −m in BR(y)
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and by comparison

(2.7) u(x) ≤ vy(x) in Ω.

This shows that

u(x) ≤ Cd(x) for all x ∈ Ω

with C = 2MR. To see this, let x ∈ Ω and select z ∈ ∂Ω so that d(x) = |x− z|. Then select

y ∈ Y so that z /∈ BR(y). Since x ∈ BR(y), we have

R2 − |x− y|2 = (R− |x− y|)(R+ |x− y|) ≤ 2R(R − |x− y|)

= 2Rd(x, ∂BR(y)) = 2R|x− z| = 2Rd(x)

and we conclude by (2.7). �

We conclude this section by observing that the upper bound (2.5) fails to be true if the

boundary ∂Ω is flat, at least if Ω is unbounded. Indeed in the case of the halfspace

Ω =
{
x = (x1, . . . , xN ) ∈ R

N : x1 > 0
}
,

the function u(x) = xγ1 is a solution in Ω of P+
k (D2u) = 0 for any γ ∈ (0, 1) and k < N , but

on the other hand the ratio u(x)
d(x) =

1
x1−γ
1

is unbounded near x1 = 0.

3. Lipschitz regularity, compactness

In this section we will study the Lipschitz regularity of viscosity solutions of

(3.1)

{
P−
1 (D2u) +H(x,∇u) = f(x) in Ω

u = 0 on ∂Ω

and, in a dual fashion, of

(3.2)

{
P+
1 (D2u) +H(x,∇u) = f(x) in Ω

u = 0 on ∂Ω,

where f is continuous and bounded in Ω.

Proposition 3.1. Let Ω ∈ CR. If H satisfies (SC 1) and bR < 1, then the solutions u of

(3.1) and (3.2) are Lipschitz continuous in Ω. The Lipschitz norm of u can be bounded by a

constant depending only on Ω, b and the L∞ norms of u and f .

Proof. We shall write the proof in the case P−
1 , since if v is a solutions of (3.2), then u = −v

is a solution of P−
1 (D2u) + H̃(x,∇u) = −f(x) in Ω, where H̃(x, ξ) = −H(x,−ξ) satisfies in

turn (SC 1).

Let u be a solution of (3.1). It is sufficient to show that for any x, y ∈ Ω such that |x−y| < δ,

where δ is a positive constant to be determined, then

u(x)− u(y) ≤ L|x− y|

with L = L(Ω, b, ‖u‖∞ , ‖f‖∞).

Fix θ ∈ (1, 2) and consider

v(x) = |x| − |x|θ, x ∈ B1.
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The function v is strictly positive for x 6= 0 and satisfies the inequality

(3.3) P−
1 (D2v(x)) +H(x,∇v(x)) ≤ −θ(θ − 1)|x|θ−2 + b(1 + θ|x|θ−1), x ∈ B1\ {0} .

Since the right hand side in (3.3) tends to −∞ as |x| → 0, we can then pick a δ =

δ(b, θ, ‖f‖∞) ∈ (0, 1) such that

P−
1 (D2v(x)) +H(x,∇v(x)) < −‖f‖∞ in ∈ Bδ\ {0}.

Moreover, in view of Proposition 2.8, there exists a positive constant C = C(Ω, b, ‖f‖∞) such

that

(3.4) − u(x) ≤ Cd(x) ∀x ∈ Ω.

For x0, y0 ∈ Ω, with |x0 − y0| < δ and L = max
(
2‖u‖

∞

δ−δθ
, C
1−δθ−1

)
, let

(3.5) vy0(x) := u(y0) + Lv(x− y0), x ∈ Bδ(y0).

By construction

P−
1 (D2vy0(x)) +H(x,∇vy0(x)) < −‖f‖∞ in Bδ(y0)\ {y0}

and

vy0(y0) = u(y0).

We claim that

(3.6) u(x) ≤ vy0(x) on ∂(Bδ(y0) ∩ Ω),

so that the comparison principle yields the conclusion

u(x0) ≤ vy0(x0) ≤ u(y0) + L|x0 − y0|.

To prove the inequality (3.6) we note that for any x ∈ ∂Bδ(y0) ∩Ω

vy0(x) = u(y0) + L(δ − δθ) ≥ u(y0) + 2 ‖u‖∞ ≥ u(x),

while if x ∈ Bδ(y0) ∩ ∂Ω, we obtain in view of (3.4), together with the choice of L,

u(x) = 0 ≤ u(y0) + Cd(y0) ≤ u(y0) + C|x− y0|

≤ u(y0) + L(|x− y0| − |x− y0|
θ) = vy0(x)

as we wanted to show. �

The conditions concerning the geometry of Ω and the smallness of the Hamiltonian in the

Proposition 3.1, i.e.

(3.7) Ω ∈ CR and bR < 1,

are only used to get the inequality (3.4), in order to apply comparison principle up to the

boundary. For this reason and following the arguments of the previous proof, it is easy to

obtain interior Lipschitz regularity for any bounded domain Ω and any H satisfying (SC 1),

assuming u to be merely a subsolution of (3.1).

Moreover the assumptions (3.7) can be dropped if we require that the subsolution u satis-

fies(3.4). These observations are summarized as follows.
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Proposition 3.2. Suppose that Ω is a bounded domain and H satisfies condition (SC 1).

The following holds:

i) any subsolution u of (3.1) is a locally Lipschitz continuous function in Ω;

ii) any subsolution u of (3.1) that satisfies (3.4) for some constant C is Lipschitz con-

tinuous in Ω.

The Lipschitz norm of u can be estimated by a constant which depends on b and the L∞ norms

of u and f .

Finally the same conclusion holds for supersolutions u of (3.2), with (3.4) replaced by the

inequality u ≤ Cd in Ω.

This globally Lipschitz regularity result for nonnegative subsolutions of (3.1), a consequence

of Proposition (3.2) ii), is quite surprising, considering that the global C0,γ-regularity may

fails for any γ ∈ (0, 1] in the class of nonpositive subsolutions of (3.1). Here below an example:

the nonpositive radial function

u(x) =





1
log(1−δ) if |x| ≤ δ

1
log(1−|x|) if δ < |x| < 1

0 if |x| = 1,

is convex for δ ∈ (0, 1) close to 1 and

P−
1 (D2u(x)) ≥ 0 in B1.

On the other hand for any γ ∈ (0, 1]

sup
x,y∈B1

x 6=y

|u(x)− u(y)|

|x− y|γ
= +∞.

4. Demi-eigenvalues

4.1. Maximum and minimum principle. We now investigate the relationship between

the generalized principal eigenvalues µ±k and µ±k given in the introduction and the validity of

the maximum and minimum principle.

In the following we shall sometimes need to reinforce the assumptions on the Hamiltonian H.

In particular:

(SC 2) H(x, tξ) = tH(x, ξ) ∀(x, t, ξ) ∈ Ω× R+ × R
N ,

(SC 3) ∃ω modulus of continuity s.t. |H(x, ξ) −H(y, ξ)| ≤ ω (|x− y| (1 + |ξ|)) .

Observe that (SC 2) implies (SC 1) with b = sup(x,ξ)∈Ω×B1
|H(x, ξ)| hence this will be the

meaning of b under condition (SC 2). Furthermore (SC 2) and (SC 3) imply that H is Lips-

chitz continuous in the following sense:

|H(x, ξ) −H(y, ξ)| ≤ C|x− y||ξ|
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for some constant C > 0. Indeed, for η = ξ
|ξ||x−y| ,

|H(x, ξ) −H(y, ξ)| = |H(x, η) −H(y, η)||ξ||x − y|

and

|H(x, ξ)−H(y, ξ)| ≤ ω(|x− y|(1 + |η|))|ξ||x − y| ≤ ω(1 + diam(Ω))|x − y||ξ|.

Theorem 4.1. Let Ω be a bounded domain. Under the assumption (SC 2)-(SC 3), the oper-

ator

P−
k (D2·) +H(x,∇·) + µ·

satisfies

i) the minimum principle in Ω for µ < µ−k ,

ii) the maximum principle in Ω for µ < µ+k .

Proof. The proof follows the argument of [6].

Without loss of generality we can suppose that µ ≥ 0, because otherwise the results are well

known. We shall detail the case i) of the minimum principle, since with minor changes the

arguments prove ii) as well. We argue by contradiction by assuming that v is a solution of

(4.1)

{
P−
k (D2v) +H(x,∇v) + µv ≤ 0 in Ω

lim inf
x→∂Ω

v(x) ≥ 0

and v(x0) < 0 for some x0 ∈ Ω.

By the definition of µ−k there exists ρ ∈ (µ, µ−k ) and u < 0 in Ω, a solution of

(4.2) P−
k (D2u) +H(x,∇u) + ρu ≥ 0 in Ω.

The function v
u is upper semicontinuous in the compact set

K =

{
x ∈ Ω :

v(x)

u(x)
≥
v(x0)

u(x0)

}

and if γ := supx∈Ω
v(x)
u(x) , then

(4.3) γ = sup
x∈K

v(x)

u(x)
< +∞ and 0 <

v(x0)

u(x0)
≤ γ.

For 0 < ε < γ the lower semicontinuous function v − (γ − ε)u reaches its negative minimum

in Ω, say

min
x∈Ω

(v(x) − (γ − ε)u(x)) = v(xε)− (γ − ε)u(xε), xε ∈ Ω,

since

lim inf
x→∂Ω

(v(x) − (γ − ε)u(x)) ≥ lim inf
x→∂Ω

v(x) ≥ 0

and by definition of the supremum there exists yε ∈ Ω such that

v(yε)− (γ − ε)u(yε) < 0.
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Moreover, by lower semicontinuity, we can find a subdomain Ω′ ⊂⊂ Ω, depending on ε and

containing xε, for which

(4.4) min
∂Ω′

(v(x)− (γ − ε)u(x)) > v(xε)− (γ − ε)u(xε)

and a sequence (xk, yk) ∈ Ω′ ×Ω′ such that

v(xk)− (γ − ε)u(yk) +
k

2
|xk − yk|

2 = min
(x,y)∈Ω′×Ω′

(
v(x)− (γ − ε)u(y) +

k

2
|x− y|2

)
.

Using [14, Lemma 3.1], up to subsequences, we have

k

2
|xk − yk|

2 → 0, (xk, yk) → (x̂ε, x̂ε) for some x̂ε ∈ Ω′

and

(v(xk), (γ − ε)u(yk)) → (v(x̂ε), (γ − ε)u(x̂ε)) for k → +∞.

Hence (xk, yk) ∈ Ω′ × Ω′ for large k and in view of [14, Theorem 3.2] there exist Xk and Yk,

N ×N symmetric matrices, such that

Xk ≥ Yk, (k(yk − xk),Xk) ∈ J
2,−
v(xk), (k(yk − xk), Yk) ∈ J

2,+
(γ − ε)u(yk).

Since the function (γ − ε)u(x) is still a solution of (4.2) by the homogeneity assumption

(SC 2), we have from (4.1)-(4.2)-(SC 3), that

µv(xk) ≤ −P−
k (Xk)−H(xk, k(yk − xk))

≤ −P−
k (Yk)−H(yk, k(yk − xk)) + ω (|xk − yk|(1 + k|xk − yk|))

≤ ρ(γ − ε)u(yk) + ω (|xk − yk|(1 + k|xk − yk|)) .

Sending k → +∞

(4.5) µv(x̂ε) ≤ ρ(γ − ε)u(x̂ε).

If µ = 0 this is a contradiction. Otherwise, for µ > 0, since γu(x̂ε) ≤ v(x̂ε) we deduce from

(4.5) that

1 <
ρ

µ
≤

γ

γ − ε
;

which is a contradiction for small ε. �

The same proof as above works for general, positively homogeneous of degree one, degenerate

elliptic operators F (x,∇·,D2·), to which the proof of comparison principle applies (see [14,

Theorem 3.3]).

Theorem 4.1 implies the following

Corollary 4.2. Under the assumption (SC 2)-(SC 3), if BR1
⊂ Ω, then

(4.6) µ−k ≤
2(k + bR1)(2 + k + bR1)

R2
1

.

Moreover if Ω ⊂ BR2
and bR2 ≤ k, then

(4.7) µ−k ≥
2(k − bR2)

R2
2

.
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Proof. For BR1
⊂ Ω consider the function

w(x) = −(R2
1 − |x|2)2

extended to zero outside of BR1
, as in [5]. Then

sup
|x|<R1

P−
k (D2w) +H(x,∇w)

−w
≤ sup

|x|<R1

P−
k (D2w) + b|∇w|

−w

≤ 4 sup
|x|<R1

(
k + bR1

(R2
1 − |x|2)

−
2|x|2

(R2
1 − |x|2)2

)
.

In the set Ω1 =
{
x ∈ BR1

: |x|2 ≥
R2

1
(k+bR1)

2+k+bR1

}
we have

k + bR1

(R2
1 − |x|2)

−
2|x|2

(R2
1 − |x|2)2

≤ 0,

while in Ω2 = BR1
\Ω1

k + bR1

(R2
1 − |x|2)

−
2|x|2

(R2
1 − |x|2)2

≤
k + bR1

(R2
1 − |x|2)

≤
(k + bR1)(2 + k + bR1)

2R2
1

.

Hence v is a negative solution in Ω of

P−
k (D2w) +H(x,∇w) +

2(k + bR1)(2 + k + bR1)

R2
1

w ≤ 0,

which is zero on the boundary ∂Ω. This contradicts the minimum principle and, by Theorem

4.1,

µ−k ≤
2(k + bR1)(2 + k + bR1)

R2
1

,

leading to (4.6).

Let Ω ⊂ BR2
and w(x) = −(R2

2 − |x|2). For bR2 < k (the case bR2 = k is trivial) we may

assume as in the proof of Proposition 4.3 that Ω ⊂ BR2
, so w < 0 in Ω and

P−
k (D2w) +H(x,∇w) + µw ≥ P−

k (D2w)− b|∇w|+ µw

= 2(k − b|x|) + µ
(
|x|2 −R2

2

)

≥ 2(k − bR2)− µR2
2 = 0

if µ = 2(k−bR2)
R2

2

and therefore

µ−k ≥
2(k − bR2)

R2
2

.

�

We now impose some conditions on the domain Ω. For the maximum principle we get
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Proposition 4.3. Under the assumption (SC 1), if Ω ⊂ BR then, for any k < N ,

(4.8) bR < k =⇒ µ+k = µ+k = +∞.

In particular, in the case H ≡ 0, for any bounded domain Ω, µ+k = µ+k = +∞ and the operator

P−
k (D2·) + µ· satisfies the maximum principle for any µ.

Proof. Choose any µ > 0 and assume without loss of generality that Ω ⊂ BR and γ :=
µR2

2(k−bR) > 1, replacing if necessary R with R′ > R in order that k − bR′ is positive and

sufficiently close to 0. Let w be the function introduced in section 2, then w(x) > 0 in Ω and

P−
k (D2w(x)) +H(x,∇w(x)) + µw(x)

≤ P−
k (D2w(x)) + b|∇w(x)|+ µw(x)

= −2γk(R2 − |x|2)γ−1 + 2γb|x|(R2 − |x|2)γ−1 + µ(R2 − |x|2)γ

≤ (R2 − |x|2)γ−1(−2γ(k − bR) + µR2)

= 0.

By definition, we have obtained that µ+k ≥ µ+k = +∞. �

For the minimum principle, the assumptions are slightly stronger.

Theorem 4.4. Let Ω ∈ CR, and assume (SC 2)-(SC 3) and that bR < k. Then,

µ−k = µ−k ,

and the minimum principle holds true if and only if µ < µ−k .

In order to prove Theorem 4.4 we shall need the following proposition which proves that

if Ω is a hula hoop domain, the bound µ−k of Theorem 4.1 is sharp. We indeed exhibit a

supersolution v at level µ−k which will invalidate the minimum principle. The result has been

inspired by [4, Proposition 3.2].

Proposition 4.5. Assume (SC 2)-(SC 3). Then µ−k is finite and, if Ω ∈ CR and bR < k,

there exists a nonpositive supersolution v 6≡ 0 of
{

P−
k (D2v) +H(x,∇v) + µ−k v = 0 in Ω

v = 0 on ∂Ω.

For the proof of the proposition above, we need the following existence result that will be

used also in the next section.

Proposition 4.6. Assume (SC 2) -(SC 3). Let Ω ∈ CR and µ < µ−k , and assume that bR < k.

Then, for f bounded, there exist a subsolution v and a supersolution w of

(4.9) P−
k (D2u) +H(x,∇u) + µu = f(x) in Ω

that satisfy w ≤ v in Ω and w = v = 0 on ∂Ω.
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Proof of Proposition 4.6. Fix ρ ∈ (µ, µ−k ), and, in view of the definition of µ−k , we may select

a real valued subsolution ψ of

P−
k (D2ψ) +H(x,∇ψ) + ρψ = 0 in Ω

such that ψ < 0 in Ω. We may assume by multiplying ψ by a positive constant if necessary

that (ρ−µ)ψ ≤ −‖f‖∞ in Ω. It is now clear that ψ is a subsolution of (4.9) or more precisely

P−
k (D2ψ) +H(x,∇ψ) + µψ = ‖f‖∞ in Ω.

By translation, we may assume that 0 ∈ Ω. Since Ω is a bounded, open, convex set, for any

ε > 0, there is δ > 0 such that

(1 + ε)Ω ⊃ Ωδ := {x ∈ R
N : dist(x,Ω) < δ}.

We select such a δ = δ(ε) so that 0 < δ < ε.

Define ψε(x) = ψ((1 + ε)−1x) for x ∈ (1 + ε)Ω and note that ψε is a subsolution of

(1 + ε)2P−
k (D2ψε(x)) + (1 + ε)H((1 + ε)−1x,∇ψε(x)) + µψε(x) = ‖f‖∞ in (1 + ε)Ω.

Thus, setting Hε(x, ξ) = (1 + ε)−1H((1 + ε)−1x, ξ) and µε = (1 + ε)−2µ , we see that ψε is a

subsolution of

P−
k (D2ψε) +Hε(x,∇ψε) + µεψε = (1 + ε)−2‖f‖∞ in Ωδ.

For each z ∈ Bδ, we define functions ψz
ε in Ω and H̃ε in Ω× R

N , respectively, by

ψz
ε(x) = ψε(x+ z), and H̃ε(x, ξ) = sup

z∈Bδ

Hε(x+ z, ξ),

and note that ψz
ε is a subsolution of

(4.10) P−
k (D2ψz

ε) + H̃ε(x,∇ψ
z
ε) + µεψ

z
ε = (1 + ε)−2‖f‖∞ in Ω.

Set

Wε(x) := max
z∈Bδ/2

ψz
ε (x) = max

y∈Bδ/2(x)
ψε(y) = max

y∈Bδ/2(x)
ψ((1 + ε)−1y) for x ∈ Ω,

and observe that Wε is upper semicontinuous in Ω and it is a subsolution of (4.10), that

Wε ≤ maxΩ ψ < 0 in Ω, and that the function

H̃ε(x, ξ) = sup
z∈Bδ

(1 + ε)−1H((1 + ε)−1(x+ z), ξ)

satisfies (SC 2) and (SC 3), with constant (1 + ε)−1b in place of b.

Fix any ε > 0. We show that Wε is bounded from below in Ω. For this, we argue by

contradiction and thus suppose that there is a sequence (xn)n∈N ⊂ Ω such that Wε(xn) < −n

for all n ∈ N. We may assume up to extracting a subsequence that (xn) converges to some

x0 ∈ Ω. Moreover, we may assume that xn ∈ Bδ/2(x0) for all n, which implies that, for any

n ∈ N, x0 ∈ Bδ/2(xn) and

ψε(x0) ≤Wε(xn),

which gives a lower bound of the sequence (Wε(xn)), a contradiction.
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Next, we choose a sequence (εn)n∈N of positive numbers converging to zero, and, for n ∈ N,

set Vn =Wεn , Hn = H̃εn , µn = µεn , and observe that, as n → +∞, Hn → H in C(Ω× R
N),

µn → µ.

Fix any n ∈ N, and let fn(x) = (1+εn)
−2f(x). The standard construction of barrier functions

for elliptic PDE yields a supersolution W ∈ C(Ω) of (5.3) that satisfies W = 0 on ∂Ω and

W ≥ 0 in Ω. If f ≥ 0 then just take W ≡ 0.

(4.11) P−
k (D2u) +Hn(x,∇u) + µnu = fn(x) in Ω,

and Vn is a subsolution. We define the function zn in Ω by

zn(x) = inf{u(x) : u supersolution of (4.11), Vn ≤ u ≤W in Ω, u = 0 on ∂Ω}.

By Perron procedure, the function zn is a “viscosity solution” of (4.11) in the sense that the

upper semicontinuous envelope (zn)
∗ of zn, given by

(zn)
∗(x) = inf

r>0
sup{zn(y) : y ∈ Ω, |y − x| < r},

is a subsolution of (4.11) and the lower semicontinuous envelope (zn)∗ of zn, given by

(zn)∗(x) = sup
r>0

inf{zn(y) : y ∈ Ω, |y − x| < r},

is a supersolution of (4.11). It is clear that infΩ Vn ≤ (zn)∗ ≤ (zn)
∗ ≤ W in Ω. If u is a

supersolution of (4.11) and if Vn ≤ u ≤W in Ω and u = 0 on ∂Ω, then u is supersolution of

P−
k (D2u) +Hn(x,∇u) = fn(x)− |µn| inf

Ω
Vn in Ω.

Proposition 2.8, applied to −u, yields an inequality u(x) ≥ −Cnd(x) for all x ∈ Ω and some

Cn > 0, where Cn is independent of the choice of u. This implies that −Cnd ≤ (zn)∗ ≤

(zn)
∗ ≤W in Ω, which, in particular, ensures that (zn)∗ = (zn)

∗ = 0 on ∂Ω.

Now, we intend to send n → +∞. We claim that sup ‖(zn)∗‖∞ < +∞. To check this,

we argue by contradiction and suppose that sup ‖(zn)∗‖∞ = +∞. We may assume up to a

subsequence that limn→+∞ ‖(zn)∗‖∞ = +∞. Set

Zn(x) =
(zn)∗(x)

‖(zn)∗‖∞
for x ∈ Ω, n ∈ N,

and note that if we set

M0 = sup
n∈N

‖f‖∞
‖(zn)∗‖∞

+ |µ|,

then Zn is a supersolution of

P−
k (D2Zn) +Hn(x,∇Zn) =M0 in Ω.

Since bk < R, by applying Proposition 2.8 to −Zn, we get, for some constant M1 > 0,

(4.12) Zn(x) ≥ −M1d(x) for all x ∈ Ω, n ∈ N.

We take the lower relaxed limit of (Zn)n∈N, that is, we set

Z−(x) = lim inf
n→+∞

∗Zn(x) = sup
r>0

inf{Zn(y) : y ∈ Ω, |y − x| < r, n > r−1}.
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It is a standard observation (see, e.g., [14, Chapter 6]) that Z− is lower semicontinuous in Ω

and a supersolution of (1.2). It is clear that Z− ≤ 0 in Ω and minΩ Z
− = −1. Moreover, it

follows from (4.12) that Z− = 0 on ∂Ω. According to Theorem 4.1, the minimum principle

holds for (1.2), but this contradicts that minΩ Z
− = −1. Thus, we have supn∈N ‖(zn)∗‖∞ <

+∞.

For the sequence (zn), which is uniformly bounded in Ω, we consider the upper and lower

relaxed limits z+ and z− defined, respectively, by

z+(x) = lim sup
n→∞

∗zn(x) = inf
r>0

sup{zn(y) : |y − x| < r, n > r−1},

and

z−(x) = lim inf
n→∞

∗zn(x) = sup
r>0

inf{zn(y) : |y − x| < r, n > r−1},

and observe that − supn∈N ‖(zn)∗‖∞ ≤ z− ≤ z+ ≤ W in Ω and that z+ and z− are a

subsolution and a supersolution of (4.9), respectively.

Similarly to (4.12) for Zn, since (zn) is uniformly bounded in Ω, we deduce that there is a

constant M2 > 0 such that (zn)∗(x) ≥ −M2d(x) for all x ∈ Ω and n ∈ N, which implies that

z− = z+ = 0 on ∂Ω. The proof is now complete. �

We remark that defining W ε from ψε in the proof above is a sort of supconvolution (see [22]

for the use of this supconvolution in a different situation).

Proof of Proposition 4.5. The finiteness of µ−k is a consequence of Corollary 4.2 which gives

a precise estimate.

For n ∈ N let us consider the equation

(4.13) P−
k (D2w) +H(x,∇w) +

(
µ−k −

1

n

)
w = 1 in Ω.

For each n ∈ N, by Proposition 4.6, there are a subsolution vn and a supersolution wn of

(4.14) P−
k (D2u) +H(x,∇u) +

(
µ−k −

1

n

)
u = 1 in Ω,

satisfying wn ≤ vn ≤ 0 in Ω and wn = vn = 0 on ∂Ω.

We claim that supn∈N ‖wn‖∞ = +∞. Suppose by contradiction that supn∈N ‖wn‖∞ < +∞.

We choose j ∈ N large enough so that

1

j

(
2 sup
n∈N

‖wn‖∞ + µ−k +
1

j

)
≤ 1,

which implies that, since wj ≤ vj ≤ 0,

2

j
vj −

1

j

(
µ−k +

1

j

)
≥ −1 in Ω,

and, hence, vj − 1/j is a subsolution of

P−
k (D2u) +H(x,∇u) + (µ−k +

1

j
)u = 0 in Ω.
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Since vj−1/j < 0 in Ω, this contradicts the definition of µ−k and proves that supn∈N ‖wn‖∞ =

+∞.

Up to extracting a subsequence, we may assume that

lim
n→+∞

‖wn‖∞ = +∞.

We introduce bounded functions zn = wn
‖wn‖∞

, solutions of

P−
k (D2zn) +H(x,∇zn) +

(
µ−k −

1

n

)
zn ≤

1

‖wn‖∞
in Ω.

We set

v(x) := lim inf
n→+∞

∗ zn(x) for x ∈ Ω.

This is the lower half relaxed limit of (zn) and is a supersolution of P−
k (D2v) +H(x,∇v) +

µ−k v ≤ 0 in Ω. Moreover, it is clear that v ≤ 0 in Ω and minΩ v = −1. Using again the bound

(2.5), we deduce that v = 0 on ∂Ω, and the proof is complete. �

Proof of Theorem 4.4. We begin by proving the following

Claim. For µ < µ−k the operator P−
k (D2·) +H(x,∇·) + µ· satisfies the minimum principle.

The proof proceeds like the proof of Theorem 4.1, the only difference is that for ρ ∈ (µ, µ−k ),

the lim supx→z u(x) could be zero for some z ∈ ∂Ω. But using (SC 2) and the negativity of

u(x) we get

P−
k (D2u) +H(x,∇u) ≥ 0 in Ω

while

P+
k (D2(−v))−H(x,−∇(−v)) ≥ −µ

∥∥v−
∥∥
∞

in Ω.

In view of Propositions 2.5-2.8, with m = µ ‖v−‖∞, there exist two positive constants C1 and

C2 such that

u(x) ≤ −C1d(x) and − v(x) ≤ C2d(x) for any x ∈ Ω.

Hence

0 <
v(x0)

u(x0)
≤ γ := sup

x∈Ω

v(x)

u(x)
≤
C2

C1
< +∞.

Now we can proceed exactly as in the proof of Theorem 4.1 in order to complete the proof of

the claim.

To finish the proof of Theorem 4.4 we observe that Proposition 4.5 and the claim imply that

µ−k ≥ µ−k , but the reverse inequality is true by definition. �

Remark 4.7. The bound (4.6) clearly holds for µ−k under the assumptions of Theorem 4.4.

Since µ−k ≥ µ−k , by definition, the inequality (4.7) is a fortiori true for µ−k . Moreover (4.7) is

trivial for bR2 ≥ k. We show in the Example 4.9 that µ−k can be zero.

Remark 4.8. The equality µ−k = µ−k holds true also in some non-convex case, for instance if

Ω is a star-shaped domain, i.e.

(4.15) Ω− {x0} ⊆ (1 + ε)(Ω − {x0})
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for some x0 ∈ Ω and all ε > 0. That was noticed e.g. in [26] in the case of the Pucci’s

extremal uniformly elliptic operators. Supposing x0 = 0, for any ε > 0 there exists, by

definition, wε < 0 in Ω satisfying

P−
k (D2wε) +H(∇wε) + (µ−k − ε)wε ≥ 0.

Hence vε(x) = wε

(
x

1+ε

)
is negative in Ω and if

(4.16) H = H(ξ) = H+(ξ),

then

P−
k (D2vε) +H(∇vε) +

µ−k − ε

(1 + ε)2
vε ≥ 0 in Ω.

In this way
µ−k − ε

(1 + ε)2
≤ µ−k

and µ−k = µ−k in the limit ε → 0. The same holds true for µ+k and µ+k when H = H(ξ) =

−H−(ξ).

Note that on one hand the class of the bounded domains satisfying (4.15) strictly includes

C, but on the other hand the equality µ−k = µ−k is here realised under the restriction (4.16),

while in Theorem 4.4 the Hamiltonian H is allowed to be negative and dependent on the

x-variable.

4.2. Some unusual phenomena. It is well known (see e.g. [5]) that in the uniformly elliptic

case the principal eigenvalues tend to infinity when the measure of the domain tends to zero;

the next example shows that this is not necessarily the case for P−
k .

Example 4.9. We show that in an annulus µ−k = 0, even if the measure of the annulus tends

to zero, as long as the diameter is sufficiently large. For k < N , the radial function

v(x) = sin |x|+ cos ε

is a supersolution of the problem
{

P−
k (D2v)− b|∇v| = 0 in Aε = B 3

2
π+ε\B 3

2
π−ε

v = 0 on ∂Aε

where b = k
3

2
π
and ε is small enough (see [16]). Since v violates the minimum principle, being

negative in the annulus Aε, we deduce from i) of Theorem 4.1 that

µ−k = 0.

In the next example we show how the definition of µ+k is strongly unstable with respect to

perturbations both of the operator and the domain.

Example 4.10. Let Ω = BR. For k < N and n ∈ N, the values µ+k associated to the

operators

P−
k (·) +

k

R+ 1
n

| · |
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blows-up to +∞ in view of Proposition 4.3, since in this case k
R+ 1

n

R < k. Moreover

P−
k (·) +

k

R+ 1
n

| · | −→ P−
k (·) +

k

R
| · |

as n → +∞ locally uniformly in S
N × R

N . On the other hand, taking the function w(x) =(
R2 − |x|2

)γ
with γ > 1, it turns out that

P−
k (D2w) +

k

R
|∇w|+

2γk

R2
w =

(
R2 − |x|2

)γ−1
(
−2γk + 2

k

R
γ|x|+

2γk

R2
(R2 − |x|2)

)
≥ 0;

moreover w = 0 on ∂Ω, w > 0 in Ω and so µ+k ≤ 2γk
R2 by ii) of Theorem 4.1.

Concerning the instability with respect to small perturbations of Ω, we consider the sequence

of expanding subdomains Ωn = BR− 1

n
and the operator P−

k (·) + k
R | · |. As before, for any Ωn

one has µ+k = +∞, while in µ+k ≤ 1 in the limit case Ω = ∪n∈NΩn.

Notice that in [5] the stability of the principal eigenvalue with respect to interior perturba-

tions of the domain is proved by means of the Krylov-Safonov Harnack inequality. It is not

surprising therefore to expect the failure of the Harnack inequality in our degenerate setting,

which is indeed the case as can be seen in the following very simple example. The nonnega-

tive function u(x1, . . . , xN ) = x2N is clearly a solution of P−
k (D2u) = 0 in B1 for k < N , but

sup
B1

u = 1 and inf
B1

u = 0.

Other examples of instability are provided in [4] for first order operators.

5. Existence

In this section we shall prove existence results for Dirichlet problems

(5.1)

{
P−
k (D2u) +H(x,∇u) + µu = f(x) in Ω

u = 0 on ∂Ω,

with Ω in the class CR. We start with the case where k is any number between 1 and N .

Proposition 5.1. Assume (SC 2) -(SC 3). Let Ω ∈ CR and µ < µ−k , and assume that bR < k.

If f is bounded and H satisfies, for all x ∈ Ω and for all ξ, η in R
N ,

(5.2) |H(x, ξ)−H(x, η)| ≤ b|ξ − η|,

then for all

µ < µ−k,b := sup{µ ∈ R : ∃w < 0 in Ω, P−
k (D2w)− b|∇w|+ µw ≥ 0 in Ω},

there exists a unique solution of (5.1).

Proof. Let v and w be as in Proposition 4.6. By (5.2), the nonpositive function u = w − v is

a supersolution of P−
k (D2u) − b|∇u| + µu = 0 (see [16]). Using Theorem 4.4 i), we get that

u ≥ 0. Hence v = w is the required solution. �
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In the rest of the section we shall only consider the case k = 1, in that case beside the

existence below the generalized eigenvalue we can also prove existence of the eigenfunction.

The proofs somehow follow the schemes of [6, 7].

Theorem 5.2. Let Ω ∈ CR, let H satisfying (SC 2)-(SC 3) and let f be a bounded continuous

function in Ω. Assume bR < 1. Then there exists a solution u ∈ Lip(Ω) of

(5.3)

{
P−
1 (D2u) +H(x,∇u) + µu = f(x) in Ω

u = 0 on ∂Ω,

in the following two cases:

i) for µ < µ−1 ;

ii) for any µ if f ≤ 0.

The proof uses the construction in Proposition 4.6 and the global Lipschitz regularity obtained

in Proposition 3.2 for subsolutions.

Proof of Theorem 5.2. We first consider the case where µ < µ−1 . By Theorem 4.4 and

Proposition 4.6, we see that there are a subsolution v and a supersolution w of (5.3) such

that w ≤ v in Ω. By estimate (2.5), there is a constant C > 0 such that −Cd ≤ w ≤ v in Ω.

As in Proposition 4.6, the standard construction of barrier functions for elliptic PDE yields a

supersolution W ∈ C(Ω) of (5.3) that satisfies W = 0 on ∂Ω and W ≥ 0 in Ω. If f ≥ 0 then

just take W ≡ 0.

We define function u in Ω through the Perron procedure, that is,

u(x) = sup{z(x) : z subsolution of (5.3), v ≤ u ≤W in Ω}.

The upper semicontinuous envelope u∗ is a subsolution of (5.3) and satisfies v ≤ u∗ ≤ W

in Ω, which implies that u = u∗ in Ω and, hence, u is upper semicontinuous in Ω. Since

u ≥ −Cd and u = 0 on ∂Ω, by Proposition 3.2, we see that u is Lipschitz continuous in Ω.

Hence u = u∗ and it is a supersolution of (5.3), we conclude the proof of i).

For the proof of ii), we can treat the case where f ≤ 0 in Ω in the same way. The only

difference is that, when f ≤ 0, the constant function 0 is a subsolution of (5.3) and replaces

v in the argument above. Thus, the bound on µ is not needed and the resulting solution u is

nonnegative. �

Theorem 5.3. Let Ω, H and b as in the Theorem 5.2. Then there exists a negative function

ψ1 ∈ Lip(Ω) such that

(5.4)

{
P−
1 (D2ψ1) +H(x,∇ψ1) + µ−1 ψ1 = 0 in Ω

ψ1 = 0 on ∂Ω.

Proof. Let µn ր µ−1 and use Theorem 5.2 to build un ∈ Lip(Ω) a solution of

(5.5)

{
P−
1 (D2un) +H(x,∇un) + µnun = 1 in Ω

un = 0 on ∂Ω.
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Observe that un are nonnegative because the forcing term being positive in Perron’s construc-

tion we can use zero as the supersolution that bounds from above.

We claim that limn→∞ ‖un‖∞ = +∞. Assume by contradiction that supn∈N ‖un‖∞ < +∞.

By Proposition 3.1 the sequence (un)n∈N is bounded in Lip(Ω) and converges , up to some

subsequence, to a nonpositive solution u of
{

P−
1 (D2u) +H(x,∇u) + µ−1 u = 1 in Ω

u = 0 on ∂Ω.

The function u is negative in Ω, otherwise if maxx∈Ω u = u(x0) = 0 and x0 ∈ Ω, then ϕ(x) = 0

should be a test function touching u from above in x0 and therefore 0 ≥ 1.

Hence, for small positive ε, we have

P−
1 (D2u) +H(x,∇u) + (µ−1 + ε)u ≥ 0 in Ω

contradicting the maximality of µ−1 .

For n ∈ N the functions vn = un
‖un‖∞

satisfy

(5.6)

{
P−
1 (D2vn) +H(x,∇vn) + µnvn = 1

‖un‖∞
in Ω

vn = 0 on ∂Ω

and are bounded in Lip(Ω), again by means of Proposition 3.1. Extracting a subsequence if

necessary, (vn)n∈N converges uniformly to a nonpositive function ψ1 such that ‖ψ1‖∞ = 1.

Taking the limit as n→ +∞ in (5.6) we have
{

P−
1 (D2ψ1) +H(x,∇ψ1) + µ−1 ψ1 = 0 in Ω

ψ1 = 0 on ∂Ω.

By the strong maximum principle (see Remark 2.6), we conclude ψ1 < 0 in Ω as we wanted

to show. �

We conclude by computing explicitly the principal eigenvalue and eigenfunction for P−
1 , with

H = 0, in the ball BR. We first note that µ−1 = µ−1 , as a consequence of Theorem 4.4 or,

equivalently, of Remark 4.8.

The function

ψ1(x) = − cos
( π

2R
|x|
)

is twice differentiable everywhere, negative in BR and zero on ∂BR. The ordered eigenvalues

of the Hessian matrix are

λ1
(
D2ψ1(x)

)
=
( π

2R

)2
cos
( π

2R
|x|
)

λ2
(
D2ψ1(x)

)
= . . . = λN

(
D2ψ1(x)

)
=
( π

2R

) sin
(

π
2R |x|

)

|x|
,

if x 6= 0 and

λ1
(
D2ψ1(0)

)
= . . . = λN

(
D2ψ1(0)

)
=
( π

2R

)2
,
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so that

P−
1

(
D2ψ1(x)

)
+
( π

2R

)2
ψ1(x) = 0 in Ω.

In particular ψ1 is a negative subsolution of P−
1 (D2·)+

(
π
2R

)2
· = 0, hence by definition of µ−1

we have µ−1 ≥
(

π
2R

)2
. On the other hand the function ψ1 invalidates the minimum principle

and we get also the reversed inequality µ−1 ≤
(

π
2R

)2
by means of Theorem 4.4. In this way

µ−1 =
( π

2R

)2

and ψ1 is a negative radial eigenfunction.

It is worth to point out that for the 1-homogeneous infinity Laplacian ∆∞u =
〈
D2u ∇u

|∇u| ,
∇u
|∇u|

〉
,

one has

µ+1 =
( π

2R

)2

with ϕ1(x) = cos
(

π
2R |x|

)
positive eigenfunction (see [21, Section 4]). In our framework we

have on the contrary µ+1 = +∞ in view of Proposition 4.3.

6. Strictly convex domains, a characterization.

In this section we give the proof of Proposition 2.7 which we like to refer to as Proposition

hula hoop.

We begin with a technical lemma.

Lemma 6.1. Let Ω be a non-empty bounded and open subset of RN , with C2-boundary, and

p ∈ ∂Ω. Let ν(x) denote the outward normal unit vector of Ω at x ∈ ∂Ω. Assume that N > 2,

and let H ⊂ R
N be a 2-dimensional plane passing through p which is not perpendicular to

ν(p). Set ∆ = Ω ∩H. Let H have the Euclidean structure induced by R
N .

i) Then, ∆ is a non-empty bounded and open subset, with C2-boundary, of the plane H.

ii) Assume in addition that the principal curvatures, κ1, . . . , κN−1, of ∂Ω at p are positive.

Then, the curvature of the planar curve ∂H∆ at p is bounded from below by min1≤i<N κi,

where ∂HA denotes the boundary of A ⊂ H, relative to H.

In the above, the perpendicularity of H and ν(p) may be expressed as the condition that

ν(p) · (q − p) = 0 for all q ∈ H.

Proof. We first prove i). We choose two orthonormal vectors e1, e2 ∈ R
N so that H =

{p+ x1e1 + x2e2 : x1, x2 ∈ R}. By the non-perpendicularity of H and ν(p), we may assume

that ν(p) · e1 < 0.

Since Ω has C2-boundary, if δ > 0 is small enough, then p+ δe1 ∈ Ω and p+ δe1 is an interior

point of ∆, relative to H. Since Ω is open, ∆ is open relative to H. Hence, ∆ is a non-empty

open subset of H. It is clear that ∆ is convex since it is an intersection of two convex sets

and also that ∆ is bounded.
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Now, we show that ∆ is a domain, with C2-boundary, in H. It is obvious that ∂H∆ ⊂ H∩∂Ω.

Fix any q ∈ H ∩ ∂Ω. We consider the function ρ ∈ C(RN) given by

ρ(x) =




dist(x, ∂Ω) if x ∈ Ω,

−dist(x, ∂Ω) if x ∈ R
N \ Ω.

This function ρ is C2 near the boundary ∂Ω and ∇ρ(x) = −ν(x) for all x ∈ ∂Ω. Set

pδ = p+ δe1 ∈ ∆, note that ρ(pδ) > 0, and choose (a, b) ∈ R
2 so that q = pδ + ae1 + be2. By

the concavity of ρ, we find that for any t ∈ [0, 1],

ρ(pδ + t(ae1 + be2)) = ρ((1 − t)pδ + tq) ≥ (1− t)ρ(pδ) + tρ(q) = (1− t)ρ(pδ),

and, hence,
d

dt
ρ(pδ + t(ae1 + be2))

∣∣∣
t=1

≤ −ρ(pδ) < 0,

which shows that

0 > ∇ρ(q) · (ae1 + be2) = −ν(q) · (ae1 + be2).

Noting that

H ∩ ∂Ω = {pδ + x1e1 + x2e2 : (x1, x2) ∈ R
2, ρ(pδ + x1e1 + x2e2) = 0}

and applying the implicit function theorem to the function: R
2 ∋ (x1, x2) 7→ ρ(pδ + x1e1 +

x2e2), we see that, in a neighborhood of q, H ∩ ∂Ω is a C2-curve in H and that q ∈ ∂H∆.

Because of the arbitrariness of q ∈ H ∩ ∂Ω, we find that H ∩ ∂Ω is a C2-curve in H and also

that H ∩ ∂Ω ⊂ ∂H∆. Thus, we conclude that ∂H∆ = H ∩ ∂Ω and that ∆ has C2-boundary

in H.

Next, we prove (ii). We may assume by translation and orthogonal transformation that p = 0

and ν(p) = (0, . . . , 0,−1). We can choose a neighborhood V ⊂ R
N of p = 0, a neighborhood

U ⊂ R
N−1 of 0 ∈ R

N−1 and a function g ∈ C2(U) such that for any x = (x1, . . . , xN ) ∈ V ,

x ∈ Ω if and only if (x1, . . . , xN−1) ∈ U and xN > g(x1, . . . , xN−1).

We have g(0) = 0, ∇g(0) = 0 and we may assume further that D2g(0) = diag(κ1, . . . , κN−1).

We choose R > 0 so that 1/R < min1≤i<N κi, and consider the open ball B with center at

−Rν(p) = (0, . . . , 0, R) and radius R. We may assume by replacing U and V by smaller ones

(in the sense of inclusion), if necessary, that for any x ∈ V ,

x ∈ B if and only if (x1, . . . , xN−1) ∈ U and xN > f(x1, . . . , xN−1),

where f(x1, . . . , xN−1) = R−
√
R2 − (x21 + · · ·+ x2N−1). Note that ∇f(0) = 0 and D2f(0) =

(1/R)I, where I denotes the identity matrix of order n − 1. By Taylor’s theorem, we may

assume again by replacing U and V by smaller ones, if necessary, that f(y) < g(y) for all

y ∈ U \ {0}. This yields

V ∩ Ω ⊂ V ∩B,

which shows that

V ∩∆ ⊂ V ∩B ∩H.
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Thus, observing that ∂B ∩H = ∂H(B ∩H), which is a special case of the identity, ∂Ω∩H =

∂H∆, with B in place of Ω, that B ∩H is a non-empty, planar, open disk with radius smaller

than or equal to R and that p = 0 ∈ ∂H∆ ∩ ∂H(B ∩H), we conclude that the curvature of

the planar curve ∂H∆ at p is larger than or equal to 1/R. This completes the proof. �

Lemma 6.2. Let Ω be a non-empty bounded and open subset, with C2-boundary, of RN . Let

κ > 0 is a lower bound of the principal curvatures of ∂Ω at every point x ∈ ∂Ω. Set R = 1/κ.

Then, for any z ∈ ∂Ω, we have

(6.1) Ω ⊂ BR(z −Rν(z)).

Clearly, (6.1) shows that Ω ∈ CR. Indeed we have proved that

Ω ⊂
⋂

z∈∂Ω

BR(z −Rν(z)).

On the other hand, by the convexity of Ω, we have

Ω =
⋂

z∈∂Ω

{x ∈ R
N : (x− z) · ν(z) < 0}.

Observe that for any z ∈ ∂Ω,

BR(z −Rν(z)) ⊂ {x ∈ R
N : (x− z) · ν(z) < 0}.

Indeed, if x ∈ BR(z −Rν(z)), then

R2 > |x− z +Rν(z)|2 = |x− z|2 + 2R(x− z) · ν(z) +R2 > 2R(x− z) · ν(z) +R2,

and

(x− z) · ν(z) < 0.

Thus,

Ω ⊃
⋂

z∈∂Ω

BR(z −Rν(z)).

In conclusion the Lemma 6.2 above proves Proposition 2.7.

Proof. It is enough to show that for any M > R and z ∈ ∂Ω,

(6.2) Ω ⊂ BM (z −Mν(z)).

We fix any M > R and p ∈ ∂Ω. To show (6.2), we suppose to the contrary that (6.2) does

not hold, and will get a contradiction.

We can thus choose a point q ∈ Ω \BM (p−Mν(p)).

Select m > 0 so small that r := p−mν(p) ∈ Ω∩BM(p−Mν(p)). Note that the line segment

[r, q] := {(1 − t)r + tq : 0 ≤ t ≤ 1} is contained in the set Ω and that r ∈ BM(p −Mν(p))

and q 6∈ BM (p−Mν(p)). These imply that, for some τ ∈ (0, 1],

(1− τ)r + τq ∈ Ω ∩ ∂BM (p−Mν(p)).

Replacing q by (1− τ)r + τq if τ < 1, we may assume that q ∈ ∂BM (p−Mν(p)).
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Since Ω is open, we may assume by replacing q by a nearby point, if needed, that two vectors

ν(p) and q − p are linearly independent. In particular, we have q 6= p and q 6= p − 2Mν(p).

Let H be the plane passing through three points p, q, p −Mν(p). We set ∆ = Ω ∩ H and

BH = BM (p−Mν(p))∩H. Since p−Mν(p) ∈ H, it is clear that BH is the planar open disk

with center p−Mν(p) and radius M .

Fix Q ∈ (R, M), so that κ > 1/Q. As in the proof of Lemma 6.1 (ii), we can choose a

neighborhood V of p so that

Ω ∩ V ⊂ BQ(p−Qν(p)) ∩ V,

from which we find that

(6.3) ∆ ∩ V ⊂ H ∩BQ(p−Qν(p)) ∩ V.

We put e1 = −ν(p) and select a unit vector e2 ∈ R
N , orthogonal to e1, so that two vectors

e1, e2 parallel to the plane H, that is, H = {p + x1e1 + x2e2 : x1, x2 ∈ R}.

We select (a, b) ∈ R
2 so that q = p+ae1+ be2. Since q ∈ ∂BM (p−Mν(p))\{p−2Mν(p), p},

it follows that 0 < a < 2M and b 6= 0. We may assume by replacing e2 by −e2, if needed,

that b < 0.

We set

∆2 = {(x1, x2) ∈ R
2 : p+ x1e1 + x2e2 ∈ ∆},

g(x1) = inf{x2 ∈ R : (x1, x2) ∈ ∆2} for x1 ∈ (0, a].

It is easily seen that ∆2 is a strictly convex, bounded and open set, with C2-boundary, in

R
2, that the line segment {t(a, b) : (0, 1]}, connecting the origin and the point (a, b), lies

in the set ∆2, that g is locally Lipschitz continuous, convex function on (0, a], and that the

graph {(x1, g(x1)) : x1 ∈ (0, a]} is a subset of ∂∆2. The last two remarks together with the

smoothness of ∆H implies that g ∈ C2((0, a]).

We consider the function fM ∈ C([0, a]) defined by

fM(x1) = −
√
M2 − (x1 −M)2.

Obviously we have, for (x1, x2) ∈ (0, a]× R,

x2 > fM (x1) if p+ x1e1 + x2e2 ∈ BH .

Similarly, we define fQ ∈ C([0, 2Q]) by

fQ(x1) = −
√
Q2 − (x1 −Q)2.

By (6.3), if we define the function h on [0, a] by

h(x) =




0 if x = 0,

g(x) if x ∈ (0, a],

then fM(0) = fQ(0) = h(0) = 0 and fM (x1) < fQ(x1) ≤ h(x1) for all x1 ∈ (0, δ] and some

small δ > 0. On the other hand, since {x1(a, b) : x1 ∈ (0, 1]} ⊂ ∆2, we have h(x1) = g(x1) ≤

(b/a)x1 for all x1 ∈ (0, a]. It is now clear that h ∈ C([0, 1]).
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Since q = p+ ae1 + be2 ∈ ∆∩ ∂BM (p−Mν(p)), we have h(a) = g(a) < b = fM (a). Consider

the function φ ∈ C([0, a]) given by

φ(x) = h(x)− fM(x).

It follows that φ(0) = 0, φ(a) < 0 and φ(δ) > 0. Accordingly, φ has a positive maximum at

a point d ∈ (0, a). Hence, φ′(d) = 0 and φ′′(d) ≤ 0. That is, we have f ′M(d) = g′(d) and

f ′′M (d) ≥ g′′(d), which shows that the curvature of the graph g at (d, g(d)) is smaller than

or equal to that of fM , which is 1/M . This shows that the planar curve ∂H∆ has curvature

smaller than 1/R at p+ de1 + g(d)e2. Since the planar curve ∂H∆ has curvature larger than

or equal to κ = 1/R by Lemma 6.1, this is a contradiction. �
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