Process mining techniques aim at extracting non-trivial knowledge from event traces, which record the concrete execution of business processes. Typically, traces are "dirty" and contain spurious events or miss relevant events. Trace alignment is the problem of cleaning such traces against a process specification. There has recently been a growing use of declarative process models, e.g., Declare (based on LTL over finite traces) to capture constraints on the allowed task flows. We demonstrate here how state-of-the-art classical planning technologies can be used for trace alignment by presenting a suitable encoding. We report experimental results using a real log from a financial domain.

Computing Trace Alignment against Declarative Process Models through Planning / DE GIACOMO, Giuseppe; Marrella, Andrea; Maggi, Fabrizio M.; Sardina, Sebastian. - (2016), pp. 367-375. (Intervento presentato al convegno 26th International Conference on Automated Planning and Scheduling (ICAPS 2016) tenutosi a London; United Kingdom nel 12-17 June, 2017).

Computing Trace Alignment against Declarative Process Models through Planning

Giuseppe De Giacomo;ANDREA MARRELLA
;
Fabrizio M. Maggi;Sebastian Sardina
2016

Abstract

Process mining techniques aim at extracting non-trivial knowledge from event traces, which record the concrete execution of business processes. Typically, traces are "dirty" and contain spurious events or miss relevant events. Trace alignment is the problem of cleaning such traces against a process specification. There has recently been a growing use of declarative process models, e.g., Declare (based on LTL over finite traces) to capture constraints on the allowed task flows. We demonstrate here how state-of-the-art classical planning technologies can be used for trace alignment by presenting a suitable encoding. We report experimental results using a real log from a financial domain.
2016
26th International Conference on Automated Planning and Scheduling (ICAPS 2016)
Business Process; Classical planning; Declarative process models; Financial domains; Finite traces; Process mining; Process specification; State of the art
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Computing Trace Alignment against Declarative Process Models through Planning / DE GIACOMO, Giuseppe; Marrella, Andrea; Maggi, Fabrizio M.; Sardina, Sebastian. - (2016), pp. 367-375. (Intervento presentato al convegno 26th International Conference on Automated Planning and Scheduling (ICAPS 2016) tenutosi a London; United Kingdom nel 12-17 June, 2017).
File allegati a questo prodotto
File Dimensione Formato  
DeGiacomo_Postprint_Computing-trace-alignment_2016.pdf

accesso aperto

Note: https://dl.acm.org/citation.cfm?id=3038641
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 285.69 kB
Formato Adobe PDF
285.69 kB Adobe PDF
DeGiacomo_Computing-trace-alignment_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 573.88 kB
Formato Adobe PDF
573.88 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/965504
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 15
social impact