
Computing Trace Alignment against Declarative Process Models through Planning
Giuseppe De Giacomo

Sapienza - Universitá di Roma, Italy
degiacomo@dis.uniroma1.it

Fabrizio Maria Maggi
University of Tartu, Estonia
f.m.maggi@ut.ee

Andrea Marrella
Sapienza - Universitá di Roma, Italy
marrella@dis.uniroma1.it

Sebastian Sardina
RMIT University, Melbourne, Australia

sebastian.sardina@rmit.edu.au

Abstract

Process mining techniques aim at extracting non-trivial
knowledge from event traces, which record the concrete ex-
ecution of business processes. Typically, traces are “dirty”
and contain spurious events or miss relevant events. Trace
alignment is the problem of cleaning such traces against
a process specification. There has recently been a growing
use of declarative process models, e.g., DECLARE (based on
LTL over finite traces) to capture constraints on the allowed
task flows. We demonstrate here how state-of-the-art classical
planning technologies can be used for trace alignment by pre-
senting a suitable encoding. We report experimental results
using a real log from a financial domain.

1 Introduction
This paper is concerned with process mining and trace align-
ment in Business Process Management (BPM) (van der
Aalst 2013a), an active area of research that is highly rel-
evant from a practical perspective while offering many tech-
nical challenges to computer scientists. BPM is based on the
observation that each product/service that an organization
provides is the outcome of a number of activities performed.
Business processes are the key instruments for organizing
such activities and improving the understanding of their in-
terrelationships. Examples of processes include insurance
claim processing, order handling, and hospital procedures.

The fast pace of change in markets is more and more im-
posing the definition and use of flexible information systems
for supporting business processes of companies. In fact, such
dynamic markets make the specification of a business pro-
cess obsolete in a relatively short span of time, due to the
need of bringing frequent modifications and updates to the
process in order to accommodate for new market conditions.
The availability of event data recorded by information sys-
tems makes process mining a valuable instrument to improve
and support business processes (van der Aalst 2011).

The starting point for process mining is an event log. XES
(eXtensible Event Stream) (Task Force on Process Mining
2013; Verbeek et al. 2010) has been developed as the stan-
dard for storing, exchanging, and analyzing event logs. Each
event in a log refers to an activity (i.e., a well-defined step in

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some process) and is related to a particular case (i.e., a pro-
cess instance generated by an underlying process model).
The events belonging to a case are ordered and form a so-
called trace, which can be seen as one “run” of the process.
Event logs may store additional information about events,
such as the resource executing or initiating the activity, the
timestamp of the event, or data elements recorded with the
event. Ideally, every event in a trace corresponds to the exe-
cution of an activity in the underlying process model.

In the BPM literature, three types of process mining can
be distinguished (van der Aalst 2011): (i) process discovery
(learning a process model from a set of traces in an event
log), (ii) conformance checking (comparing the observed be-
havior in the event log with the modeled behavior), and (iii)
model enhancement (extending models based on additional
information in the event logs). In this paper, we focus on
conformance checking, and specifically on trace alignment.

Conformance checking starts from the assumption that,
since process models are typically not enforced by informa-
tion systems (see human behavior is often involved), traces
can be “dirty”, and possibly containing spurious or missing
events. This implies a discrepancy between the modeled be-
havior and the observed one. In the context of conformance
checking, trace alignment is the problem of “cleaning” such
dirty traces on the basis of expected process specifications
to the aim of understanding the root cause of each deviation.

In this paper, we show how to exploit state-of-the-art clas-
sical planning techniques and technologies (Ghallab, Nau,
and Traverso 2004; Bonet and Geffner 2001) for trace align-
ment with respect to a predefined declarative process model.
In comparison to imperative approaches, which explicitly
specify all possible sequences of activities in a process,
declarative languages implicitly specify the allowed behav-
ior of the process with a set of (temporal) constraints that
must be met. Declarative models offer flexibility (every-
thing that is not specified is allowed), and are appropriate
to describe dynamic environments, where several execution
paths are allowed. Specifically, we will focus on the well-
established DECLARE process modeling language (van der
Aalst, Pesic, and Schonenberg 2009), which enjoys formal
semantics grounded in LTL (Linear Temporal Logic) (Pnueli
1977) on finite traces.

In a nutshell, given a set of LTL-like DECLARE con-
straints modeling a process, and an actual trace of the pro-



cess (obtained from an event log), we build a planning do-
main and problem instance, correspondingly, such that a so-
lution plan for the planning problem amounts to the set of in-
terventions to align the trace with the constraints, if required.
Of course, an empty plan implies that no alignment is re-
quired: the trace already conforms to the DECLARE model.

Before providing our reduction to a planning task (Sec-
tion 4) and reporting on experiment results (Section 5) on
a real case study from the financial domain (Section 3), we
first review the relevant background required (Section 2).

2 Preliminaries
2.1 The DECLARE Modeling Language
DECLARE is a declarative process modeling language origi-
nally introduced by (van der Aalst, Pesic, and Schonenberg
2009). Instead of explicitly specifying the flow of the inter-
actions among process activities, DECLARE describes a set
of (temporally extended) constraints that must be satisfied
throughout the process execution. The orderings of activi-
ties are implicitly specified by constraints and anything that
does not violate them is possible during execution.

Technically, a DECLARE model D = (A, πD) consists of
a set of possible activitiesA involved in a process and a col-
lection of constraints πD defined over such activities. DE-
CLARE constraints are instantiations of templates, i.e., pat-
terns that define parameterized classes of properties. Tem-
plates have a graphical representation understandable to the
user and analyst, but they also enjoy precise semantics in
different logics (Montali et al. 2010) (e.g., LTL over finite
traces), making them verifiable and executable.

Table 1 summarizes some DECLARE templates (the
reader can refer to (van der Aalst, Pesic, and Schonenberg
2009) for a full description of the language). Templates ex-
istence(A) and absence(A) require that A occurs at least once
and never occurs in every process instance, respectively.
Template init(A) specifies that A must occur in the first posi-
tion of the process instance. Template co-existence(A,B) re-
quires that if one of the activities A or B occur, the other one
must also occur. Templates choice and exclusive choice(A,B)
indicate that A or B occur eventually in each process in-
stance. The exclusive choice template is more restrictive be-
cause it forbids A and B to occur both in the same process in-
stance. The responded existence(A,B) template states that if
A occurs, then B should also occur (either before or after A).
The response(A,B) template specifies that when A occurs,
then B should eventually occur after A. The precedence(A,B)
template indicates that B can occur only if A has occurred be-
fore. The succession(A,B) template states that both response
and precedence relations hold between A and B.

Templates alternate response(A,B) and alternate prece-
dence(A,B) strengthen the response and precedence tem-
plates respectively by specifying that activities must alter-
nate without repetitions in between. The alternate succes-
sion(A,B) template is the combination of the alternate re-
sponse and alternate precedence templates. Even stronger
ordering relations are specified by templates chain re-
sponse(A,B) and chain precedence(A,B). These templates re-
quire that the occurrences of A and B are next to each other.

The chain succession(A,B) template is the combination of
the chain response and chain precedence templates.

DECLARE also includes some negative constraints to
explicitly forbid the execution of activities. The not co-
existence(A,B) template indicates that A and B can not oc-
cur together in the same process instance. According to the
not succession(A,B) template any occurrence of A can not
be eventually followed by B. Finally, the not chain succes-
sion(A,B) template states that A and B can not occur one
immediately after the other.

2.2 Conformance Checking and Trace Alignment
Lying under the umbrella of process mining, conformance
checking techniques focus on comparing the observed be-
havior in an event log with the modeled behavior reflected
by a process model. Typically, conformance requirements
on business processes stem from different sources such as
laws, regulations, or guidelines that are often available as
textual descriptions. An example constraint from the medi-
cal domain would be “The patient has to be informed about
the risks of a surgery before the surgery takes place.” In
practice, conformance checks are often conducted manually
and hence perceived as a burden (Sadiq, Governatori, and
Naimiri 2007), although their importance is undoubted.

The need to check for conformance of business processes
based on a set of constraints may emerge in different phases
of the process lifecycle (Ly et al. 2012; Sadiq 2011). Dur-
ing design time, the conformance of a process model with a
set of constraints is checked. At runtime, the progress of a
potentially large number of process instances is monitored
to detect or even predict violations. Finally, processes can
be diagnosed for conformance violations in a post mortem
or off-line manner, i.e., after the process execution has com-
pleted. In this paper, we focus on this last type of analysis
and in particular on trace alignment.

The starting points for trace alignment are an event log
and a compliance model. An event log contains evidence
of process executions stored like traces. Traces consist of
events. Each event is represented using a unique identifier
(such that it appears at most once in the entire log) and is
associated to the execution of a specific activity. Therefore,
for the sake of simplicity, we shall assume in this work that
a trace T amounts to a sequence of activities, describing one
run of the process. A log is just a set of such traces.

Being based on constraints, DECLARE is very suitable for
specifying compliance models that are used to check if the
behavior of a system complies with desired regulations. The
compliance model defines the constraints related to a sin-
gle process instance, and the overall expectation is that all
instances comply with the model. Consider, for example,
the response constraint �(a → ♦b). This constraint indi-
cates that if a occurs, b must eventually follow. Therefore,
this constraint is satisfied by traces T1 = 〈a, a, b, c〉, T2 =
〈b, b, c, d〉, and T3 = 〈a, b, c, b〉, but not by T4 = 〈a, b, a, c〉
(no b response exists for the second instance of activity a).

In this context, trace alignment is the task of verifying
if the actual flow of work of completed process instances
recorded in an event log is compliant with the intended
declarative process model. If a discrepancy (i.e., violations



of one or more DECLARE constraints) between a specific
trace of the log and the model is identified, the goal of trace
alignment is to repair such a discrepancy by aligning the
trace (i.e., the observed behavior) with the model (i.e., the
modeled behavior).

Specifically, given a DECLARE model D = (A, πD) and
a trace T over activities in A (possibly not compliant with
D), the trace alignment task amounts to finding a trace T̂
over A that is compliant with D. Here, trace T̂ is called an
alignment of T over D. Of course, not all alignments are
judged equally and one strives for those deviating less, or
with less associated cost, from the original trace. So, in the
extreme case, if trace T already meets the DECLARE model
D, one would prefer T itself as the (trivial) alignment over
any other alternative alignment.

3 Case Study
Since 2011, the BPI Workshop features an initiative
called International Business Process Intelligence Challenge
(BPIC). The idea is that an event log is provided with some
background information and points of interest. Researchers
and practitioners participate in a competition in which they
are asked to test, apply or validate whatever technique or
tool they developed using this log. In 2010, the three uni-
versities of technology in The Netherlands joined forces in
erecting the 3TU Datacenter. This initiative aimed at pub-
licly sharing datasets such that other researchers can benefit
from whatever data can be collected.

The constraints used for our evaluation were extracted
from the log provided for the BPIC 2012 (3TU Data Center
2012). The event log pertains to an application process for
personal loans or overdrafts in a Dutch financial institute. It
merges three intertwined sub-processes. Therefore, in each
case, events belonging to different sub-processes can occur.
The log contains 262,200 events distributed across 36 activ-
ities and includes 13,087 cases.

Figure 1 shows a DECLARE model representing the ex-
pected behavior of the application process. It contains 15
activities that can be associated to different lifecycle states
indicating that an activity can be scheduled, started, or com-
pleted. The model contains 16 constraints.

In the figure, application activities (denoted with “A ”)
refer to the management of the application. A SUBMITTED
and A PARTLYSUBMITTED indicate the initial application
submission. A ACCEPTED indicates that the application
has been accepted. A APPROVED, A REGISTERED, and
A ACTIVATED specify the end states of successful appli-
cations. A CANCELLED and A DECLINED specify the end
states of unsuccessful applications.

Offer activities (denoted with “O ”) refer to offers com-
municated to the customer. O SELECTED indicates that
the applicant asked to receive an offer. O CREATED and
O SENT specify that the offer has been prepared and trans-
mitted to the applicant.

Work item activities (denoted with “W ”) refer to work
items that occur during the approval process. These events
mainly refer to manual tasks executed by the resources of
the financial institute during the application approval pro-

cess. W Afhandelen leads indicates a follow up on incom-
plete initial submissions. W Completeren aanvraag speci-
fies that accepted applications are completed. W Beoordelen
fraude refers to the investigation of suspect fraud cases.
W Wijzigen contractgegevens indicates the modification of
approved contracts.

The case study described in this section has been used to
conduct our experimentation. See Section 5 for a detailed
description of the experimental results.

4 Encoding Trace Alignment in PDDL
Our planning-based approach to perform trace alignment re-
quires to define a single PDDL (McDermott et al. 1998)
planning domain encoding all the constraints of a DECLARE
model, the predicates and the planning actions to keep track
and modify a generic trace, and as many planning problems
as are the traces of the event log to be checked for alignment.

Once a DECLARE modelD and a trace T have been prop-
erly encoded in PDDL, we feed a state-of-the-art classical
planner with such inputs. The plan synthesized will consist
of a sequence of alignment steps that modify T by remov-
ing/adding existing/new activity instances from/in T , in or-
der to obtain an aligned trace T̂ compliant with D. If T is
already aligned with respect to D, the plan will be empty.

In order to quantify the severity of a deviation between a
trace T and the model D, we exploit a cost function on the
alignment steps. The costs depend on the specific character-
istics of the process, e.g., it may be more costly to skip an
insurance check for high claims than for low claims.

In this work, we represent planning domains and planning
problems using PDDL 2.2 (Edelkamp and Hoffmann 2004),
which includes derived predicates plus the :action-costs
requirement, used to keep track of the costs of planning ac-
tions. Next, we show how the problem of aligning a trace
with a DECLARE model can be modeled in PDDL.

4.1 The Planning Domain
In the planning domain, we provide a unique abstract type
activity, which captures every possible activity instance
involved in some DECLARE constraint or included in some
trace of the event log. Several sub-types of activity are
defined to express the specific activities of interest. For ex-
ample, if we suppose that the event log is composed of a sin-
gle trace T0 = 〈a, b, c, a, d〉, and that the DECLARE model
includes the single constraint not succession(a,e), five activ-
ities subtypes would be required in the planning domain:
(:types a b c d e - activity)

Every activity instance possibly involved in the alignment
procedure has certain properties. An activity instance may
be included (or not) in the original trace, and if this is the
case, it may be in the first or in the last position of the trace,
and it may have a successor. To capture such properties, we
introduce a predicate (traced ?a - activity) express-
ing that instance a of type activity is currently included in
the trace to be aligned. Then, two predicates (first ?a -
activity) and (last ?a - activity) hold if activity
instance a is in the first/last position of the trace. Notice that
if a trace is composed by a single activity instance a, pred-
icates traced(a), first(a) and last(a) hold together.



Figure 1: An example DECLARE model.

Finally, to indicate that a is followed in the trace by another
activity instance b, the following predicate is defined: (succ
?a - activity ?b - activity).

Planning actions are the means to add/remove activity in-
stances in/from the trace. We specify 8 basic planning ac-
tions to (i) add an activity instance in an empty trace, (ii)
remove an activity instance from a trace of length 1, (iii)
add/remove an activity instance in/from the first or the last
position of a non-empty trace, (iv) add/remove an activity
instance between/from other existing activity instances al-
ready included and ordered in the trace.

Specifically, we modeled the add actions in a way that
they can only be applied to those activity instances that are
not yet included in the trace. For example, the PDDL speci-
fication of the action addBetween is as follows:
(:action addBetween
:parameters (?x1 - activity ?x2 - activity

?x3 - activity)
:precondition (and (succ ?x1 ?x3)

(not (traced ?x2)))
:effect (and (traced ?x2)

(succ ?x1 ?x2) (succ ?x2 ?x3)
(not (succ ?x1 ?x3))
(increase (total-cost)

(adding-cost ?x2))))

This action is in charge of inserting activity x2 (that does
not appear in the trace) between activities x1 and x3 (that
are already included and “connected” in the trace).

Conversely, remove actions can be applied only to activ-
ity instances that are already in the trace. For example, we
define the PDDL action deleteBetween as follows:
(:action deleteBetween
:parameters (?x1 - activity ?x2 - activity

?x3 - activity)
:precondition (and (succ ?x1 ?x2)

(succ ?x2 ?x3))
:effect (and (not (traced ?x2))

(succ ?x1 ?x3)
(not (succ ?x1 ?x2))
(not (succ ?x2 ?x3))
(increase (total-cost)

(removing-cost ?x2))))

This action removes activity x2 from the trace. Before the
deletion, x2 is preceded by an activity x1 and followed by
an activity x3 in the trace. After the deletion, x1 and x3
will be connected. Notice that both add and remove actions
have as effect the reduction or the increasing of the length
of the trace, as they modify the values of the four predicates
defined above.

Notice also that the adding or the deletion of an
activity instance has a well defined cost. To specify
the cost of a planning action applied to a specific
activity instance, we define three PDDL numeric flu-
ents. The first two, (adding-cost ?a - activity) and
(removing-cost ?a - activity), are used to record
the cost of adding/removing an activity instance in/from a
trace. The third one, (total-cost), keeps track of the to-
tal cost of the alignment.

The constraints belonging to a DECLARE model have
their representation as PDDL derived predicates. Unlike ba-
sic predicates, they are not directly affected by planning ac-
tions, but by means of a formula defined over the basic and
derived predicates of the planning domain. For example, the
DECLARE constraint existence(a) is represented as follows:
(:derived (existence-a)

(exists (?act - a) (traced ?act)))

The predicate states that the constraint is fulfilled if in the
trace under analysis there exists at least an activity instance
of type ‘a’ for which the predicate traced holds.

Some DECLARE constraints require a more complex
specification with nested derived predicates, such in the case
of the response(a,b) constraint:
(:derived (response-a-b)



(forall (?ta - a) (exists (?tb - b)
(response ?ta ?tb))))

(:derived (response ?t1 - activity
?t2 - activity)

(or (not (traced ?t1)) (succ ?t1 ?t2)
(and (succ ?t1 ?t3)

(response ?t3 ?t2))))

The predicate is applied on activities of type ‘a’ and on ac-
tivities of type ‘b’, and is satisfied if when an activity in-
stance of type ‘a’ occurs in the trace, then at least an instance
of type ‘b’ occurs in the trace after the instance of a.

Each DECLARE constraint listed in Table 1 has its own
independent formalization as a PDDL derived predicate.

4.2 The Planning Problem
The planning problem involves defining the initial state, the
goal condition, and a finite set of objects (or constants), re-
quired to properly ground all the predicates defined in the
planning domain. In our case, constants will correspond to
the activity instances involved in the trace to be aligned or
included in the DECLARE model.
Number of activity constants. A key problem is to deter-
mine how many instances (and constants) for each activity
are needed to guarantee completeness, i.e., to guarantee that
if there is a way to align the trace, it will be found.

At the very minimum, we need as many constants per ac-
tivity as the number of times the activity appears in the trace
of concern. However, if the trace does not conform to the
DECLARE constraints, additional instances of activities may
be required for alignment, but how many exactly?

To answer this question, we define, given a DECLARE
model D and a trace T , the constraint satisfaction problem
CTD = (V,CD ∪ CT ) where:

• V = {#AI ,#AE ,#AT | A is an activity}. Variables
#AI ,#AE , and #AT denote the number of instances of
activity A that appear in the trace of concern, the number
of additional instances that may be needed in the worst
case for the trace to be “aligned,” and the total number of
instances (the sum of initial and additional instances).

• CD is the set of inequality constraints as per Table 1 using
the set of DECLARE constraints in D union the following
set of constraints defining variable #AT :

{(#AT = #AI +#AE) | A is an activity}.

• CT = {(#AI = n) | A is mentioned n times in T }.

Observe that as the DECLARE negative constraints state
that certain activity should not arise, they never impose the
need for extra activity constants. Also, since there are no
strict inequalities, inconsistency is ruled out trivially.

Proposition 1. For any trace T and set of DECLARE con-
straints in D, the constraint problem CTD has a solution.

Of course, while any solution to CTD will guarantee com-
pleteness of the approaches (see below), we should look at
the smallest solutions for CTD : the less constants are used, the
more efficient the planner will in general be.

As an example, let us consider a DECLARE model D1
that consists of the constraints existence(a) and chain re-
sponse(a,b), and a trace T1 = 〈a, b, a, c〉, being a, b, c activ-
ity instances. To find the exact number of activity constants
required in the planning problem, we can build a constraint
problem as described above, whose solution will be to have
2 constants of type ‘a’ (a0 and a1), 2 constants of type ‘b’
(b0 and b1) and 1 constant of type ‘c’ (c1). Finally, the
planning problem will include the following sets of objects:

(:objects
a0 a1 - a
b0 b1 - b
c0 - c)

Initial State and Goal Condition. The initial state captures
the original composition of the trace to be aligned. Basi-
cally, it consists of the conjunction of the basic predicates
that hold before any alignment step is performed, and of the
cost of adding/removing activity constants to/from the trace.
For example, if we consider trace T1 defined before, the ini-
tial state would be as follows:

(:init
(traced a0) (traced a1) (traced b0)
(traced c0) (first a0) (last c0)
(succ a0 b0) (succ b0 a1) (succ a1 c0)
(= (adding-cost a0) 1)
(= (removing-cost a0) 5)
(= (adding-cost a1) 1)
(= (removing-cost a1) 5)
(= (adding-cost b0) 1)
(= (removing-cost b0) 5))
(= (adding-cost b1) 1)
(= (removing-cost b1) 5))
(= (adding-cost c0) 1)
(= (removing-cost c0) 5))

The goal condition is a conjunction of derived predicates,
i.e., of the DECLARE constraints to which the trace must
comply. If we consider, for example, the DECLARE model
D1 specified above, the goal condition would be as follows:

(:goal (and (existence-a)
(chain_response-a-b))

Finally, as our purpose is to minimize the total cost of
the alignment, the planning problem contains the following
specification: (:metric minimize (total-cost)).

To complete our discussion, let us show an example of
trace alignment starting from trace T1 and model D1. It is
evident that T1 is not compliant withD1, since the constraint
chain response(a,b) does not hold (there is no instance of b
in the trace that comes immediately after the second instance
of a). There are two possible alignments in this case: (i) re-
move the second instance of a from the trace, or (ii) add a
second instance of b after the second instance of a. As the
cost of removing an instance of a is greater than the cost of
adding a second instance of b, the second strategy will be
preferred by the planner. The plan will therefore consist of
a single alignment step, i.e., an Add action to put the second
instance of b between the second instance of a and the first
instance of c. The aligned trace will be: T̂1 = 〈a, b, a, b, c〉.

This concludes the definition of the planning domain and
problem with respect to a given DECLARE model and a trace



TEMPLATE NOTATION LTL FORMALIZATION INEQUALITY CONSTRAINT

init(A)
init

A A (#AT ≥ 1)

existence(A)
1..∗

A ♦A (#AT ≥ 1)

absence(A)
0

A ¬♦A

choice(A,B) A −− ♦−− B ♦A ∨ ♦B (#AT ≥ 1 ∧#BT ≥ 1)

exclusive choice(A,B) A −− �−− B (♦A ∨ ♦B) ∧ ¬(♦A ∧ ♦B) (#AT ≥ 1 ∧#BT ≥ 1)

responded existence(A,B) A •−−−− B ♦A→ ♦B (#AT = 0 ∨#BT ≥ 1)

co existence(A,B) A •−−−• B (♦A→ ♦B) ∧ (♦B → ♦A) (#AT ≥ 1 ∧#BT ≥ 1)

response(A,B) A •−−−I B �(A→ ♦B) (#BE ≥ #AT )

precedence(A,B) A −−−I• B ¬BWA (#AE ≥ #BT )

succession(A,B) A •−−I• B �(A→ ♦B) ∧ (¬BWA) (#AE = #BT )

alternate response(A,B) A •===I B �(A→©(¬AUB)) (#BE ≥ #AT )

alternate precedence(A,B) A ===I• B (¬BWA) ∧�(B → (¬BWA))) (#AE ≥ #BT )

alternate succession(A,B) A •==I• B �(A→©(¬AUB))∧(¬BWA)∧
�(B → (¬BWA)))

(#BE = #AT )

chain response(A,B) A •=−=−=−I B �(A→©B) (#BE ≥ #AT )

chain precedence(A,B) A =−=−=−I• B �(©B → A) (#AE ≥ #BT )

chain succession(A,B) A •=−=−I• B �(A→©B) ∧�(©A→ B) (#BE = #AT )

not co existence(A,B) A •−−−•‖ B (♦A→ ¬♦B) ∧ (♦B → ¬♦A)

not succession(A,B) A •−−I•‖ B �(A→ ¬♦B)

not chain succession(A,B) A •=−=−I•‖ B �(A→ ¬©B)

Table 1: DECLARE templates with their corresponding notation, logical formalization, and associated inequality constraints.

to be checked and aligned. It turns out that by solving such
planning problem one can solve the trace alignment task.

Proposition 2 (Correctness). Let P be the planning prob-
lem constructed as above for a given set of DECLARE con-
straints D and a trace T . Then, there exists an alignment T̂
with D if and only if P has a solution.

Intuitively, this holds because each inequality represents
the largest “worst” possible number of additional task in-
stances that may be needed. For example, for response(a,b)
we may need to add one instance of b for each instance of
a. It is clear to see that from the plan provided by the plan-
ner, one can easily reconstruct the aligned trace. In addition,
if we use optimal planning systems, we will achieve align-
ments with the lowest cost possible.

5 Alignment Tool and Experiments
Following the approach depicted in Section 4, we devel-
oped a planning-based alignment tool that is able to find
the minimum cost trace alignment against a pre-specified

DECLARE process model. The tool, which has been devel-
oped as a standard Java application, can be ran in batch
mode (to perform large experiments) or interactively us-
ing a GUI interface (see Figure 2). The fact that the tool
uses a classical planner to perform trace alignment is com-
pletely transparent to the user. Specifically, our tool makes
use of the LAMA planner (Richter and Westphal 2010) from
the FAST-DOWNWARD planning framework.1 If used via its
GUI interface, the process designer needs to (i) specify an
alphabet A of activities that will be used for the construc-
tion of the traces and of the DECLARE constraints (cf. step
1 in Figure 2); (ii) define the structure of every trace to be
analyzed (cf. step 2 in Figure 2); and (iii) build a DECLARE
model (cf. step 3 in Figure 2). The tool also allows us to load
existing event logs formatted with the XES standard and to
import DECLARE models (saved as XML files) previously
designed through the official DECLARE design tool (West-
ergaard and Maggi 2011). In order to calculate the number
of instances required to align traces (cf. Section 4), the tool

1http://www.fast-downward.org/



Figure 2: A screenshot of the alignment tool.

relies on the LP SOLVE2 integer linear programming solver.
The final step for the user consists of selecting the type of
heuristic used to search for a valid plan alignment (the tool
allows us to select between a Blind A* search strategy or a
Lazy greedy best-first search with preferred operators3), the
cost of adding/removing a specific activity constant in/from
the trace, and the subset of traces of the event log that need
to be analyzed.

We tested our planning-based approach in our tool with
a real event log from the financial domain case study de-
scribed in Section 3. The log tested comes from real process
executions and contains 200 traces of various lengths, be-
tween 3 and 58 events. In terms of the model, the original
case study includes 16 constraints (see Figure 1), which is
arguably a large number of constraints. To have a sense of
scalability with respect to the size of the model, though, we
have also tested the log against sets of 10 and 20 meaningful
subset/superset of such constraints. We performed our tests
by using a machine consisting of an Intel Core i7-4770S
CPU 3.10GHz Quad Core and 4GB RAM. For the plan syn-
thesis, we selected the Lazy Greedy search strategy, and we
assigned the same unitary cost to add/remove activity con-
stants in/from a trace.

The results of our experiments can be seen in Table 2
and Figure 3. For a better understanding of the performance,
we separated the time taken for pre-processing from the ac-
tual planning time involved. We also aimed at understat-
ing how performance scales up with longer traces and more
DECLARE constraints. We point out that real traces involve
most often less than 25 events, and process models with 16
DECLARE constraints are considered large. So, one should

2http://lpsolve.sourceforge.net/5.5/
3http://www.fast-downward.org/Doc/

SearchEngine

consider our test not only as a practical one based on real
settings, but also one that is complex. Given this, some con-
clusions to be drawn are:

1. Planners are able to align even the most complicated
traces in no more than 10 minutes overall (for the largest
traces). However, in our logs, 50% of the traces are not
longer than 15 events and 70% of the traces contain no
more than 25 events. Thus, one would expect to align such
traces in less than one minute and a half. This all makes
the approach acceptable for offline reasoning.

2. Importantly, the majority of the time taken happens at pre-
processing time, mostly in the translation and grounding
phase. We note that such pre-planning phase depends on
the DECLARE constraints only and the number of activity
instances we expect to use. This suggests that, rather than
doing the pre-processing for every trace, one could poten-
tially factor that phase out and do it once for the same DE-
CLARE model. As one can see from the results, this would
mean that large traces on large models can be aligned in
half a minute.

3. The tool performance degrades as traces become longer,
though not in a dramatic way to preclude from practi-
cal applicability. More interesting, the approach does not
seem to degrade on performance as the process model in-
creases on size (i.e., more DECLARE constraints).
We notice that the above remarks should all be taken with

care, as they represent preliminary experimentation with
only one domain. Nonetheless, the fact that we tested our
tool in real logs, with large DECLARE models, and with the
planning system out-of-the-box (i.e., no optimizations) sug-
gests that the approach is both feasible and promising.

6 Discussion
Business process conformance has recently become an im-
portant research topic. Substantial work on conformance
checking has focused on procedural process modeling lan-
guages (e.g., (Cook and Wolf 1999; Rozinat and van der
Aalst 2008; Adriansyah, van Dongen, and van der Aalst
2011; Mannhardt et al. 2015; van der Aalst 2013b; de Leoni
et al. 2014; Munoz-Gama, Carmona, and van der Aalst
2014). In recent years, though, an increasing number of re-
searchers are focusing on the conformance checking with
respect to declarative models. For example, (Chesani et al.
2009) proposed an approach based on Abductive Logic Pro-
gramming for compliance checking with respect to reactive
business rules; (Montali et al. 2010) extended it by mapping
constraints to LTL and evaluating them using automata. In
turn, (Burattin et al. 2012) reported an approach to evalu-
ate the conformance and “healthiness” of a log with respect
to a DECLARE model, by converting a DECLARE constraint
into an automaton and, using a so-called “activation tree” to
compute, for each trace, whether a DECLARE constraint is
violated or fulfilled. All those works do not aim at aligning
the trace of concern but at calculating its “fitness” value (i.e.,
how much it adheres to a DECLARE model).

The work described in (de Leoni, Maggi, and van der
Aalst 2012; 2015) is closer to ours as it performs confor-
mance checking analysis of a log by an A*-like specialized



10 DECLARE constraints 16 DECLARE constraints 20 DECLARE constraints
trace

length
no.

traces
search
time

total
time

alignment
actions

search
time

total
time

alignment
actions

search
time

total
time

alignment
actions

5 51 0.73 4.63 0.2 1.31 9.77 0 1.42 10.86 1
10 42 0.74 4.59 0.1 1.48 11.41 0 1.59 12.55 1.13
15 13 2.21 19.93 0 3.78 38.52 0 3.75 37.97 1
20 18 3.33 32.96 0.56 5.94 66.56 0.53 5.64 68.24 1.06
25 19 5.05 60.75 0.89 7.07 94.14 0.85 7.74 90 3.78
30 9 10.11 146.19 1.33 12.39 197.55 1.14 14.41 275.06 2
35 14 9.26 128.7 0.86 15.38 276.77 1 13.61 237.32 1.67
40 8 12.26 165.31 1.86 19.13 316.55 2 18.61 314.65 3.57
45 10 16.44 218.11 3.3 20.91 377.12 2.33 29.08 340.17 8.44
50 7 22.74 400.45 1.71 31.44 692.58 1.5 36.4 669.37 7.57
55 2 25.25 415.74 3.5 32.39 648.06 4 35.68 733.73 5.5
60 7 30.47 524.69 1.86 33.56 705.91 1.67 35.41 715.58 4.67

Table 2: Experimental results. Numbers reported are averages over all traces of length less or equal than n and longer than
n− 5, where n is the value under column “trace length”.

5 10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

Length of trace

Tr
an

sl
at

io
n

+
Pr

ep
ro

ce
ss

in
g

tim
e

(s
ec

.)

10 constraints
16 constraints
20 constraints

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

Length of trace

Se
ar

ch
tim

e
(s

ec
.)

10 constraints
16 constraints
20 constraints

Figure 3: Performance of planning-based alignment: translation, pre-processing, and total time (left) and actual search time
(right). Each point in the x-axis represents the interval (x− 5, x] on length of traces.

search on an automaton generated from a DECLARE model.
As a result of such analysis, a trace is converted into the
most “similar” trace that the model accepts. The approach
has been implemented as a plug-in in the process mining
framework PROM (Maggi 2013).

In this work, we have presented a different perspective
to trace alignment via automated planning techniques. Plan-
ning provides a mature and “elaboration tolerant” technol-
ogy and, in fact, in the BPM literature, there exists a number
of works utilising planning in the various stages of a pro-
cess life cycle, e.g., to create process models from declar-
ative activity specifications (Marrella and Lespérance 2013)
or to run, monitor and adapt processes at run-time (Marrella,
Russo, and Mecella 2012; Marrella, Mecella, and Sardiña
2014). However, the application of automated planning tech-
niques to perform trace alignment is novel. While prelimi-
nary, the results obtained in an event log from a real case
study are promising and demonstrate that the planning ap-
proach can cope with realistic complex settings.

More importantly, and in contrast with the search-based
technique in (Maggi 2013; de Leoni, Maggi, and van der
Aalst 2012; 2015), our approach based on planning is well

suited for advanced types of conformance checking and
trace alignment in which data (Montali et al. 2013) and
time (Westergaard and Maggi 2012) are taken into account,
something that is being recognized as a necessary though
challenging problem in the BPM community. Being an area
rooted in knowledge representation, planning provides con-
venient ways for reasoning about rich type of knowledge
around processes. For example, there are planning systems
coping with time that can be potentially exploited to solve
this issue (Eyerich, Mattmüller, and Röger 2012).

We note that the encoding proposed may not be the only
one for the problem being tackled. In fact, we have so far
not paid much attention to knowledge engineering aspects,
since our objective was to show that a reduction to planning
is possible, even with the PDDL limitation of having a fi-
nite number of objects (for task instances). Hence, we do
not rule out that better, more efficient, encodings are possi-
ble. For example, our encoding does not handle symmetries
(which are many) and hence we rely on the planner to find
and handle them.

Before concluding, we notice that another approach worth
investigating to tackle the alignment task is Constraint Satis-



faction Problems (Tsang 1993). However, it is not clear how
to represent the DECLARE constraints and alignment steps
without requiring a combinatorial explosions in the number
of variables.

Finally, we are also interested in extending our study from
DECLARE to whole LTL on finite traces.

Acknowledgments. This work has been partly supported by
the Italian projects RoMA and NEPTIS, the Italian cluster
SM&ST and the Sapienza Grant ICE. Sebastian Sardina ac-
knowledges the support of the Australian Research Council
under Discovery Project DP120100332.

References
3TU Data Center. 2012. BPI Challenge 2012 Event Log.
Adriansyah, A.; van Dongen, B.; and van der Aalst, W. 2011. Con-
formance Checking Using Cost-Based Fitness Analysis. In 15th
Int. Enterprise Distributed Object Computing Conference (EDOC).
Bonet, B., and Geffner, H. 2001. Planning and Control in Artificial
Intelligence: A Unifying Perspective. Applied Intelligence 14(3).
Burattin, A.; Maggi, F. M.; van der Aalst, W.; and Sperduti, A.
2012. Techniques for a Posteriori Analysis of Declarative Pro-
cesses. In 16th Int. Enterprise Distributed Object Computing Con-
ference (EDOC).
Chesani, F.; Mello, P.; Montali, M.; Riguzzi, F.; Sebastianis, M.;
and Storari, S. 2009. Checking Compliance of Execution Traces
to Business Rules. In Business Process Management Workshops.
Springer.
Cook, J. E., and Wolf, A. L. 1999. Software Process Valida-
tion: Quantitatively Measuring the Correspondence of a Process
to a Model. ACM Trans. Softw. Eng. Methodol. 8(2).
de Leoni, M.; Munoz-Gama, J.; Carmona, J.; and van der Aalst, W.
2014. Decomposing Alignment-Based Conformance Checking of
Data-Aware Process Models. In OTM Conf. Int. Conferences.
de Leoni, M.; Maggi, F. M.; and van der Aalst, W. 2012. Align-
ing Event Logs and Declarative Process Models for Conformance
Checking. In Business Process Management. Springer.
de Leoni, M.; Maggi, F. M.; and van der Aalst, W. 2015. An
alignment-based framework to check the conformance of declar-
ative process models and to preprocess event-log data. Inf. Syst.
47.
Edelkamp, S., and Hoffmann, J. 2004. PDDL 2.2: The Language
for the Classical Part of the 4th Int. Planning Competition. Tech-
nical report, Albert Ludwigs Universität Institüt fur Informatik,
Freiburg.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using the context-
enhanced additive heuristic for temporal and numeric planning.
Springer.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Elsevier.
Ly, L. T.; Rinderle-Ma, S.; Göser, K.; and Dadam, P. 2012. On
enabling integrated process compliance with semantic constraints
in process management systems. Inf. Syst. Frontiers 14(2).
Maggi, F. M. 2013. Declarative Process Mining with the Declare
Component of ProM. In Business Process Management (Demos).
Mannhardt, F.; de Leoni, M.; Reijers, H.; and van der Aalst, W.
2015. Balanced multi-perspective checking of process confor-
mance. Computing.

Marrella, A., and Lespérance, Y. 2013. Synthesizing a Library of
Process Templates through Partial-Order Planning Algorithms. In
Business-Process and Information Systems Modeling (BPMDS).
Marrella, A.; Mecella, M.; and Sardiña, S. 2014. SmartPM: An
Adaptive Process Management System through Situation Calculus,
IndiGolog, and Classical Planning. In Knowledge Representation
and Reasoning (KR).
Marrella, A.; Russo, A.; and Mecella, M. 2012. Planlets: Auto-
matically Recovering Dynamic Processes in YAWL. In OTM Conf.
Int. Conferences.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.; Ram,
A.; Veloso, M.; Weld, D. S.; and Wilkins, D. E. 1998. PDDL
- The Planning Domain Definition Language. Technical Report
DCS TR-1165, Yale Center for Computational Vision and Control.
Montali, M.; Pesic, M.; van der Aalst, W.; Chesani, F.; Mello, P.;
and Storari, S. 2010. Declarative Specification and Verification of
Service Choreographies. ACM Trans. on the Web 4(1).
Montali, M.; Chesani, F.; Mello, P.; and Maggi, F. M. 2013. To-
wards data-aware constraints in DECLARE. In ACM Symp. on
Applied Computing (SAC).
Munoz-Gama, J.; Carmona, J.; and van der Aalst, W. 2014. Single-
Entry Single-Exit decomposed conformance checking. Inf. Syst.
46.
Pnueli, A. 1977. The Temporal Logic of Programs. In 18th An-
nual Symp. on Foundations of Computer Science (SFCS). IEEE
Computer Society.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. Journal of Artifi-
cial Intelligence Research (JAIR) 39.
Rozinat, A., and van der Aalst, W. 2008. Conformance checking
of processes based on monitoring real behavior. Inf. Syst. 33(1).
Sadiq, S.; Governatori, G.; and Naimiri, K. 2007. Modeling Con-
trol Objectives for Business Process Compliance. In Business Pro-
cess Management. Springer.
Sadiq, S. 2011. A Roadmap for Research in Business Process
Compliance. In Business Inf. Systems Workshops. Springer.
Task Force on Process Mining. 2013. XES Standard Definition.
Tsang, E. 1993. Foundations of Constraint Satisfaction. Academic
Press.
van der Aalst, W.; Pesic, M.; and Schonenberg, H. 2009. Declara-
tive Workflows: Balancing Between Flexibility and Support. Com-
puter Science - R&D.
van der Aalst, W. 2011. Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer.
van der Aalst, W. 2013a. Business Process Management: A Com-
prehensive Survey. ISRN Software Engineering.
van der Aalst, W. 2013b. Decomposing Petri nets for process min-
ing: A generic approach. Distributed and Parallel Databases 31(4).
Verbeek, H.; Buijs, J.; van Dongen, B.; and van der Aalst, W. 2010.
XES, XESame, and ProM 6. In Information Systems Evolution -
CAiSE Forum.
Westergaard, M., and Maggi, F. M. 2011. Declare: A Tool Suite
for Declarative Workflow Modeling and Enactment. In Business
Process Management (Demos).
Westergaard, M., and Maggi, F. M. 2012. Looking into the Future.
Using Timed Automata to Provide a Priori Advice about Timed
Declarative Process Models. In OTM Conf. Int. Conferences.


