A model for the sea-bottom change simulations in coastal areas with complex shorelines is proposed. In deep and intermediate water depths, the hydrodynamic quantities are calculated by numerically integrating the contravariant Boussinesq equations, devoid of Christoffel symbols. In the surf zone, the propagation of the breaking waves is simulated by the nonlinear shallow water equations. The momentum equation is solved inside the turbulent boundary layer in order to calculate intrawave hydrodynamic quantities. An integral formulation for the contravariant suspended sediment advection-diffusion equation is proposed and used for the sea-bottom dynamic simulations. The proposed model is applied to the real case study of Pescara harbor (in Italy).
Bottom changes in coastal areas with complex shorelines / Gallerano, Francesco; Cannata, Giovanni; Scarpone, Simone. - In: ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS. - ISSN 1994-2060. - STAMPA. - 11:1(2017), pp. 396-416. [10.1080/19942060.2017.1307788]
Bottom changes in coastal areas with complex shorelines
GALLERANO, Francesco;CANNATA, Giovanni;SCARPONE, SIMONE
2017
Abstract
A model for the sea-bottom change simulations in coastal areas with complex shorelines is proposed. In deep and intermediate water depths, the hydrodynamic quantities are calculated by numerically integrating the contravariant Boussinesq equations, devoid of Christoffel symbols. In the surf zone, the propagation of the breaking waves is simulated by the nonlinear shallow water equations. The momentum equation is solved inside the turbulent boundary layer in order to calculate intrawave hydrodynamic quantities. An integral formulation for the contravariant suspended sediment advection-diffusion equation is proposed and used for the sea-bottom dynamic simulations. The proposed model is applied to the real case study of Pescara harbor (in Italy).File | Dimensione | Formato | |
---|---|---|---|
Gallerano_Bottom-changes_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.