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ABSTRACT
Amodel for the sea-bottomchange simulations in coastal areaswith complex shorelines is proposed.
In deep and intermediate water depths, the hydrodynamic quantities are calculated by numeri-
cally integrating the contravariant Boussinesq equations, devoid of Christoffel symbols. In the surf
zone, the propagation of the breaking waves is simulated by the nonlinear shallowwater equations.
The momentum equation is solved inside the turbulent boundary layer in order to calculate intra-
wave hydrodynamic quantities. An integral formulation for the contravariant suspended sediment
advection-diffusion equation is proposed and used for the sea-bottom dynamic simulations. The
proposed model is applied to the real case study of Pescara harbor (in Italy).
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1. Introduction

In literature, sea-bottom evolution simulations are gen-
erally carried out by adopting two different models: one
to calculate the fluid dynamic fields and another for
the sediment transport and the dynamics of sea-bottom
changes. In this introduction, some considerations are
developed, firstly concerning the hydrodynamic models,
and secondly concerning the sediment transport models.

The depth-averaged equations of motion permit rep-
resentation of the velocity fields in bidimensional form.
In order to reduce the computational effort, the above-
mentioned two-dimensional models can be seen as an
interesting compromise between classical methodologies
and recent methodologies based on three-dimensional
approaches (Chen, Shi, Hsu, & Kirby, 2014; Keshtpoor,
Puleo, Shi, & Ma, 2015; Ma, Chou, & Shi, 2014).

The wave oscillatory features are not explicitly taken
into account by the models based on depth- and wave-
averaged motion equations (hereinafter called 2DWA).
In these models, the effects produced by the waves on the
current circulation are taken into account via the use of
radiation stresses.

Explicit representation of the periodicity of the wave
motion can be obtained using bidimensional models
that are not averaged over the wave period (hereinafter
called 2DPR). These models use the Boussinesq equa-
tions, obtained by defining the depth dependence of
the variables, and by depth integrating the equations of
motion (Ghadimi, Jabbari, & Reisinezhad, 2012; Karam-
bas & Koutitas, 1992; Ouahsine, Sergent, & Hadji, 2008).
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In these models, there is no decoupling between wave
simulations and current simulations.

Shock-capturing schemes for numerical integration of
the hybrid Boussinesq/nonlinear shallow-water equation
models allow explicit simulations of wave breaking (Pu,
Shao, Huang, & Hussain, 2013; Roeber & Cheung, 2012;
Shi, Kirby, Harris, Geiman, & Grilli, 2012). In fact, these
models solve the Boussinesq equations where both the
nonlinear and dispersive effects are relevant, and adopt
conservative numerical schemes to solve the nonlinear
shallow water equations in which nonlinearity prevails
over dispersion. The only criterion introduced in the
hybridmodels is based on the passing of a threshold value
in the ratio between the wave height and the water depth,
in order to establish when and in which computational
cells the solution switches from one set of equations to
the other. This ratio is generally assumed to equal 0.8, as
suggested by Tonelli and Petti (2010).

The interactions between wave and current and
undertow are taken into account by 2DPRmodels. More-
over, Wenneker, van Dongeren, Lescinski, Roelvink, and
Borsboom (2011) emphasized that the wave period vari-
ability of the fluid dynamic variables is taken into account
by 2DPR models. Deigaard, Justensen, and Fredsøe
(1991) underlined that bottom changes in the coastal
region are produced by complex hydrodynamic pro-
cesses: among these, undertow plays a fundamental role
in the transport of solid particles in the offshore direction.
Fredsøe (1984) highlighted that the hydrodynamic quan-
tities that vary in the wave period drive the resuspension
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of the solid particles, and their transport and settling.
Briganti and Dodd (2009) and Briganti, Dodd, Pokrajak,
and O’Donoghue (2011) demonstrated that the swash
zone fluid dynamics quantities, especially the duration of
swash events, the flow velocity and themaximumuprush,
affect morphological bed variations. Such quantities gen-
erally come into the net sediment transport rate formulas
that represent the swash zone sediment contribution to
the surf zone.

Many authors (Kalinske, 1947; Karambas & Koutitas,
2002; Menéndez, Laciana, & García, 2008; Murillo &
García-Navarro, 2010) have used the Exner equation for
bottom change simulations: in this equation, the bot-
tom time variations are expressed as a function of the
long-shore and cross-shore variations of the bed load and
suspended sediment load. The Exner equation admits the
hypothesis that only the hydrodynamic local conditions
drive the suspended sediment load.

In order to dynamically simulate the sediment load,
the solid particle concentration equation must be used
(these models are indicated hereinafter as 2DHC).When
a large portion of the water column is involved via dis-
tribution of the suspended sediment load, there is no
state of equilibrium for the sediment particle (Nicholson
et al., 1997). In the equation adopted in 2DHC mod-
els, the spatial variation of the product between the
wave- and depth-averaged concentration and wave- and
depth-averaged horizontal velocity gives the advective
transport. As a consequence, in 2DHCmodels the trans-
port of solid particles in the offshore direction produced
by the undertow is not taken into consideration. In
order to simulate the transport of solid particles due to
the undertow, vertical profiles of the horizontal veloc-
ity and concentration must be assumed not to be uni-
form. Extant studies (Drønen & Deigaard, 2007; Kim
& An, 2011) have simulated the bed evolution dynam-
ics using a quasi-three-dimensional approach (Q3D) in
which the advective terms are related to the vertical pro-
file of the horizontal velocity and the vertical profile of
the suspended sediment concentration. Other authors
(Burger, Kumar, & Ruiz-Baier, 2015; Incelli, Briganti, &
Dodd, 2015; Khosronejad, Kang, Borazjani, & Sotiropou-
los, 2011; Li & Duffy, 2011) have calculated the mor-
phological changes by means of fully coupled models,
which simultaneously solve the nonlinear shallow water
and Exner equations. Such full coupling allows one to
easily implement different closure laws or to solve an
advection equation to represent the suspended sediment
transport. Some fully coupled models use a time step for
the bed change equation, which is a multiple of the time
discretization step of the hydrodynamic model (Lesser,
Roelvink, van Kester, & Stelling, 2004; Roelvink, 2006).
As shown by Lesser et al. (2004) and Ranasinghe et al.

(2011), in these models the time step used for the bed
change equation is rarely greater than 20 times the time
discretization step of the hydrodynamic model. In this
work, we adopt a weak-coupling approach, in which the
bed changes are calculated once the hydrodynamicmodel
equations are solved and the hydrodynamic quantities
are time averaged. In accordance with the approach of
Rakha, Deigaard, and Brøker (1997), the proposedmodel
does not simulate the hydrodynamic phenomena in real-
world time; the hydrodynamic phenomena are calculated
over a simulation step equal to a multiple of the period
of the waves. This approach provides the opportunity to
obtain acceptable results, similar to those obtained using
fully coupled models, and entails reduced computational
efforts.

We present a bottom-change simulation model com-
posed of two submodels: a two-dimensional phase-
resolving model by which the fluid dynamic variables
changing inside the wave period, the undertow and the
swash zone dynamics are calculated; and a second sub-
model to simulate the bottom changes. in which the
suspended sediment concentration is calculated by the
wave-averaged advection-diffusion equation with a Q3D
methodology. The fluid motion equation and the con-
centration equation are expressed in a new contravariant
formulation. Many authors (Cioffi & Gallerano, 2006;
Hu & Shu, 1999; Mandal & Rao, 2011; Sørensen, Schäf-
fer, & Sørensen, 2004; Titarev & Drikakis, 2011) have
used unstructured computational grids in order to sim-
ulate the fluid dynamic fields on morphologically artic-
ulated domains. An alternative strategy is performed
by writing the equations of motion in contravariant
formulation (Cannata, Lasaponara, & Gallerano, 2015;
Gallerano, Cannata, & Lasaponara, 2016a; Luo&Bewley,
2004; Rossmanith, Bale, & LeVeque, 2004). In studies
by Shi and Sun (1995), Shi, Dalrymple, Kirby, Chen,
and Kennedy (2001), Shi, Kirby, and Hanes (2007), Shi,
Kong, and Ding (1998), and Shi, Svendsen, Kirby, and
Smith (2003), the fluid dynamic simulations are car-
ried out by numerically integrating the contravariant
Boussinesq equations. In a generalized curvilinear coor-
dinate system, the contravariant components are vecto-
rial components relative to a set of basis vectors that
are locally tangent to the coordinate lines. Usually, the
Christoffel symbols are present in the contravariant for-
mulation of the equations of motion. These appear as
additional terms that arise due to the variability in space
of the base vectors and that do not make it possible to
express the convective terms in a conservative form. As
underlined by Yang, Habchi, and Przekwas (1994), the
convergence to weak solutions of conservation laws is
not ensured for the numerical methods based on the
nonconservative form of the convective terms. In this
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paper, the contravariant equations of motion are pre-
sented in a new formulation characterized by the absence
of the Christoffel symbols. This makes it possible to
directly simulate the discontinuities related to the break-
ing waves. The abovementioned momentum equations
retain the second-order vertical vorticity term. The prop-
agation of breaking waves is represented by the numeri-
cal solution of the nonlinear shallow-water equations: a
weighted essentially nonoscillatory (WENO) reconstruc-
tion technique is involved in a shock-capturing scheme
with high-order. In this paper, we present two main
numerical contributions: (1) the proposal of using the
Boussinesq equations in a new contravariant formula-
tion, in which dispersive terms are not present in the
continuity equation; and (2) the proposal of using an
upwindWENO schemewith a high order of accuracy, for
reconstructing the conserved variables on the cell faces,
that is genuinely two-dimensional. Unlike the commonly
used WENO schemes based on a sequence of consec-
utive one-dimensional reconstructions (Gallerano, Can-
nata,&Tamburrino, 2012), our proposed scheme is based
on two-dimensional interpolating polynomials. Thus,
we avoid numerical errors due to the one-dimensional
reconstructions, which in generalized curvilinear sys-
tems could reach the importance of the terms that arise
from Taylor expansions in the Boussinesq equations.

A new methodology for representing the backwash
and uprush phenomena is adopted to consider the sed-
iment transport. Calculations of the fluid dynamic vari-
ables changing inside the wave period are performed by
solving the equations of motion in the boundary layer,
according to Deigaard, Fredsøe, and Hedegaard (1986),
Fredsøe, Andersen, and Silberg (1985), Rakha (1998) and
Rakha et al. (1997). The suspended sediment concentra-
tion equation is expressed in contravariant formulation.
The Q3D approach is used in order to formulate the
advective terms of the suspended sediment concentration
equation. The swash zone solid particle production is cal-
culated by following the approach of Larson andWamsley
(2007).

The paper is organized as follows. In Section 2, the
hydrodynamic model and the morphodynamic model
are described. The numerical scheme is shown in Section
3. In Section 4, validation tests and their application to
an engineering case study of the proposed model are
presented. The conclusions are drawn in the final section.

2. The proposedmodel

The proposed model embraces the two-phase flow
one-way coupling assumption, according to which the
fluid flow affects the velocity of the solid particles,
but not vice versa. Under this assumption, first, the

hydrodynamic fields are calculated by a two-dimensional
phase-resolving model (hydrodynamic model), and sec-
ond, the sediment transport and bed morphological
changes are calculated by another model (morphody-
namic model).

2.1. Hydrodynamicmodel

By indicating with η the elevation of the free surface and
h the depth of the local undisturbed water, the total local
water depth is defined as H = h + η. Let σ be a distance
from the surface of the undisturbedwater. The horizontal
velocity at z = σ is indicated by �u. The horizontal veloc-
ity �U(z), as proposed by Chen (2006), Nwogu (1993) and
Wei, Kirby, Grilli, and Subramanya (1995) is given by

�U(z) = �u + �v(z) (1)

where �v(z) is

�v(z) = (σ − z)∇(∇ · (h�u)) +
(

σ 2

2
− z2

2

)
∇(∇ · (�u))

(2)
where ∇ = ((∂/∂x), (∂/∂y)) in a Cartesian coordinate
system. We indicate with �̄v the depth-averaged value
of �v(z) correct up to order O(μ2)) and O(ε2μ2) (with
ε = a0/h0 and μ = h0/L0 nondimensional coefficients,
in which a0 is the wave amplitude, L0 the wave length and
h0 the depth), given by

�̄v = 1
H

∫ η

−h
(�v(z))dz

=
(

σ 2

2
− 1

6
(h2 − hη + η2)

)
∇(∇ · (�u)) (3)

+
(

σ + 1
2
(h − η)

)
∇(∇ · (h�u))

The Boussinesq equations in a two-dimensional Carte-
sian system are

∂η

∂t
+ ∇ · (H�u) = −∇ · (H�̄v) (4)

∂�u
∂t

+ (�u · ∇)�u = −G∇η − �W − �T − �V − �R (5)

where G is the constant of gravity, �V is due to the vertical
vorticity approximation, and �W and �T are the dispersive
terms. The bottom resistance term is represented by �R.
�W, �T and �V are given in Appendix.
The transformation from the curvilinear coordinate

system �ξ to theCartesian coordinate system, �x, is given by
xk = xk(ξ 1, ξ 2) (henceforth the apices indicate compo-
nents and not powers, with k = 1, 2). The contravariant
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base vector and the covariant base vector are, respec-
tively, �b(k) = ∂ξ k/∂�x and �b(k) = ∂�x/∂ξ k. Themetric ten-
sor is bkr = �b(k) · �b(r); its inverse is bkr = �b(k) · �b(r). The
Jacobian of the transformation is

√
b = √

det(bkr). It is
known that a generic vector, �s, which, with respect to a
basis of Cartesian vectors�i,�j is expressed as �s = sx�i + sy�j,
can be expressed with respect to a system of covariant
basis vectors, �b(1), �b(2), as �s = s1�b(1) + s2�b(2), in which s1
and s2 are the contravariant components of vector�s given
by the expressions s1 = �s · �b(1) and s2 = �s · �b(2). By writ-
ing the differential operators, which appear in Equations
(4) and (5), in the curvilinear coordinate system as

∇ =
∑
l=1,2

�b(k) ∂

∂ξ k
, ∇ · [ ] =

∑
l=1,2

�b(k) · ∂

∂ξ k
[ ]

and performing the scalar product between Equation
(5) and the contravariant base vector �b(k), after simple
passages we obtain the following Boussinesq equations,
expressed in contravariant formulation, in the curvilinear
coordinate system:

∂η

∂t
+ (Huk),k = −(Hv̄k),k (6)

∂uk

∂t
+ uk,ru

r = −Gbkrη,r − Wk − Tk − Vk − Rk (7)

Inwhich a repeated index in a lower and upper position is
held to be summed over its two values, 1 and 2; uk, v̄k,Vk,
Wk,Tk,Rk are the contravariant vectors, which represent,
in the curvilinear system of coordinates, �u, �̄v, �V , �W, �T
and�R. The covariant derivative is indicated by an index
preceded by a comma.

Application of the conservative form of the convec-
tive terms of the Boussinesq-type equations is necessary
for the definition of a shock-capturing numerical proce-
dure. Gallerano, Cannata, and Villani (2014) wrote the
Boussinesq equations in terms of conservative variables
H and Hul. The use of these variables introduce, in the
equation of continuity, a new term. A finite difference
approximation accurate to the second order was used in
order to discretize this new term. In this paper, we present
an alternative strategy, according to which H (total local
depth) andMk, given by

Mk = H(uk + v̄k) (8)

are the conserved variables. With this choice, the conti-
nuity equation (Equation (4)) reads

∂H
∂t

+ Mk
,k = 0 (9)

The continuity equation (Equation (9)) is written
without any source term; consequently, a high-order

shock-capturing finite-volume scheme can be used to
solve this equation. The contravariant formulation of
the momentum equation, in which Mk is the conserved
variable, is

∂Dk

∂t
+
(
MkMr

H
+ Gbkr

H2

2

)
,r

−
[
G(η − ηc)(bkrh),r + Gηc(bkrh),r + G

(
bkr

h2

2

)
,r

]
= ∂H

∂t
(W′k − v̄k) − H(W′′k + Tk + Vk + Rk)

+ H(v̄k,ru
r + uk,rv̄

r + v̄k,rv̄
r) (10)

where Dk is

Dk = H(uk + W′k) (11)

the ‘∧’ refers to the exponent of the power; ηc is a constant
(according to Xing & Shu, 2006) and the term Wk has
been split into

Wk = ∂W′k

∂t
+ W′′k (12)

whereW ′k andW ′′k are given in Appendix.
In the momentum equation (Equation (10)), covari-

ant derivatives are present. These derivatives produce
the Christoffel symbols (given by Equation (A.3)).
The Christoffel symbols come into in the momentum
equation as source terms; consequently, it is not possi-
ble to write the convective terms in conservative form. In
order to overcome this drawback, we propose the Boussi-
nesq equations in contravariant formulation without the
Christoffel symbols. We equate the net force to the mate-
rial volume momentum rate of change in a direction
defined by a parallel vector field (Gallerano & Cannata,
2011). Let �b(k)(ξ 10 , ξ

2
0 ) be the contravariant base vector at

point P0(ξ 10 , ξ
2
0 ) ∈ �A. In Figure 1 a graphic sketch of the

generic surface element�A in the curvilinear coordinate
system is shown. In this figure, a pair of covariant base
vectors �b(1), �b(2)and a pair of contravariant base vectors
�b(1), �b(2) defined at the generic point P(ξ 1, ξ 2) are shown;

the contravariant base vectors �̂b
(1)
, �̂b

(2)
defined at point

P0(ξ 10 , ξ
2
0 ) ∈ �A are also shown in the figure.

The covariant vector component of �b(k)(ξ 10 , ξ
2
0 ) is

λl(ξ
1, ξ 2), which can be expressed as

λl(ξ
1, ξ 2) = �b(k)(ξ 10 , ξ

2
0 ) · �b(l)(ξ

1, ξ 1) (13)

Wedenote �b(k)(ξ 10 , ξ
2
0 ) by �̃b(k), and �b(l)(ξ

1, ξ 2) by �b(l). The
integration of Equation (10) over the surface element of
area�A and the projection of this equation alongλl gives∫∫
�A

�̃b(k) · �b(l)
∂Dl

∂t
dA
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Figure 1. Graphical sketch of a computational cell in the curvi-
linear system of coordinates ξ 1, ξ 2. Gray colored area: surface
element�A bounded by four segments lying on coordinate lines
of the curvilinear coordinate system. �g(1), �g(2): covariant base vec-
tors defined at the generic point P(ξ 1, ξ 2). �g(1), �g(2): contravariant
base vectors defined at the generic point P(ξ 1, ξ 2). �̂g(1), �̂g(2):
contravariant base vectors defined at point P0(ξ 10 , ξ

2
0 ) ∈ �A.

=
∫
L

(
�̃b
(k)

· �b(l)
MlMr

H
+ G�̃b

(k)
· �b(r) H

2

2

)
nr dL

+
∫∫
�A

G(η − ηc)
�̃b(k) · �b(r)h,r dA

= −
∫
L
Gηc

�̃b
(k)

· �b(r)hnr dL +
∫
L
G�̃b

(k)
· �b(r) H

2

2
nr dL (14)

+
∫∫
�A

�̃b(k) · �b(l)
∂H
∂t

(W′l − v̄l) dA +
∫∫
�A

H(
�̃b
(k)

· �b(l)v̄
l),rur dA

+
∫∫
�A

H(
�̃b
(k)

· �b(l)ul),mv̄r dA +
∫∫
�A

H(
�̃b
(k)

· �b(l)v̄
l),r v̄

r dA

+
∫∫
�A

H�̃b(k) · �b(l)(W′′l − Tl − Vl − Rl) dA

The continuity equation becomes∫∫
�A

∂H
∂t

dA = −
∫
L
Mrnr dL (15)

where nr is the covariant vector, which is normal for the
contour line L of �A.

The accuracy of Equations (14) and (15) is of the
order ofO(μ2) andO(ε3μ2); furthermore, Equation (14)
retains the second-order vertical vorticity. The use of H
and Ml, as conserved variables, produces a momentum
equation that is different from the equation in Galler-
ano et al. (2014). This difference is related to the different
form of the convective terms. Furthermore, the continu-
ity equation (15) can be solved by a numerical scheme
based on a shock-capturing methodology because there
are no dispersive terms. Equations (14) and (15) are
numerically integrated by a high-resolution hybrid finite
volume-finite difference scheme, as shown in Section

3. The shock-capturing method proposed in this work
makes it possible to intrinsically model the wave break-
ing; therefore, no additional terms are needed to account
for the energy dissipation due to the wave breaking in the
surf zone.

2.1.1. Undertow
Indicating by ukB(z) the corrective contravariant velocity
vector (Lynett, 2006), the horizontal velocity uk(z) reads
as follows

uk(z, t) = ukα + (σ − z)bkr[(hulα),l],r

+ [(σ 2/2) − (z2/2)]bkr[(ulα),l],r + ukB(z) (16)

where ukα is the horizontal velocity contravariant vector
computed by Equations (14) and (15).

2.1.2. Fluid dynamic quantities
We indicate by U(z, t) the Cartesian horizontal compo-
nent of the fluid velocity; 
(t) indicates the thickness
of the boundary layer, U
(t) the horizontal velocity at
the top of the wave boundary layer and uf (t) the friction
velocity. The momentum equation integration inside the
boundary layer gives∫ 
(t)+(k/30)

k/30

∂(U
(t) − U(z, t))
∂t

dz = uf 2(t) (17)

where the lower limit in the integral, k/30, represents
the characteristic length scale experimentally evaluated
by Nikuradse (1933), in which k is the bed roughness
that, according to Fredsøe et al. (1985) and Engelund
and Fredsøe (1976), is assumed equal to 2.5d50, with d50
the sediment mean diameter. By adopting the approach
proposed by Fredsøe (1984) and also used by other
authors (Briganti et al., 2011; Fredsøe & Deigaard, 1993;
Williams, Briganti, & Pullen, 2014), the vertical profile
of the horizontal velocity in the wave boundary layer is
assumed to be logarithmic

U(z, t)
uf (t)

= 2.5ln
(

z
k/30

)
(18)

With the introduction of Equation (18) into Equation
(17), the variation in time of the friction velocity uf (t)
results from the following equation:

−uf 2(t) = −
(t)
dU
(t)

dt
+ 1

K
duf (t)
dt

k
30

× [ef (t)(f (t) − 1) + 1] (19)

in which U
 is the horizontal velocity at top of the
boundary layer.
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Denoting by f (t) the following quantity,

f (t) = U
(t)
uf (t)

K (20)

and using the logarithmic velocity profile given by
Equation (18), the following expression for the thickness
of the boundary layer is obtained:


(t) = (ef (t) − 1)
k
30

(21)

Solving the system composed by Equations (19), (20) and
(21), the values f (t), uf (t) and 
(t) are given. The aver-
age of the instantaneous quantities over the wave period
T is indicated by the mark [̃]. The turbulence inside the
boundary layer is produced by the interaction between
wave and current. Let be ũfc the current friction velocity
given by

ũfc2 = 1
T

∫ T

0
uf 2(t) dt (22)

Within the boundary layer, the eddy viscosity is

νt,r(z, t) = Kuf (t)z
[
1 − z


(t)

(
1 − ũfc

uf (t)

)](
1 − z

H̃

)
(23)

While, outside the boundary layer the eddy viscosity is

νt,r(z) = ũfcKz
(
1 − z

H̃

)
(24)

Under breakingwaves, the turbulence is given by the con-
tributions produced by current, wave boundary layer and
wave breaking. The turbulent kinetic energy equation
(Deigaard et al., 1986) comes into in the calculation of
eddy viscosity νt,f (z, t) related to the breaking of the
wave:

∂kt
∂t

= PRODU
ρ

− cd
kt

3
2

l
+ ∂

∂z

(
νt,f (z, t)

∂kt
∂z

)
(25)

where l is the turbulence length scale, kt = kt(z, t) is the
kinetic energy of the wave breaking-induced turbulence
and cd = 0.08. The kinetic energy production is

PRODU = Eloss
36

H̃wβpT2
δ

(
1 − δ

H̃w

)
· CSM(t) (26)

where CSM(t) is a coefficient (Kennedy, Chen, Kirby, &
Dalrymple, 2000), βp is the portion of the period of the
wave in which the kinetic energy of turbulence is pro-
duced, δ = −z is the distance from the free surface, H̃w
is the height of the wave and Eloss is the kinetic energy
dissipation.

The integration of Equation (25) gives the instanta-
neous value of kt which is used in order to calculate the
eddy viscosity produced by the wave breaking as

νt,f (z, t) = l
√
kt (27)

Consequently, the total eddy viscosity, νt(z, t), is the
quadratic sum of the eddy viscosity due to the current
and wave breaking and the eddy viscosity produced by
the wave boundary layer:

νt
2(z, t) = νt,r

2(z, t) + νt,f
2(z, t) (28)

The solution of the system of equations composed
by Equation (14) (momentum balance equation) and
Equation (15) (continuity equation) gives ukα and the
water depth H. From these values, from Equation (16)
we obtain the modified velocities uk(z, t), as proposed by
Lynett (2006). The solution of the system of Equations
(19), (20) and (21) gives the instantaneous values of the
friction velocity uf , the thickness of the boundary layer
wave 
 and the nondimensional quantity f . Once uf is
known, from Equation (22) we obtain the friction veloc-
ity due to the current ũfc, from which it is possible to
calculate, from Equation (23), the vertical eddy viscosity
distribution νt,r(z, t)within the wave boundary layer and,
from Equation (24), the vertical eddy viscosity distribu-
tion outside the wave boundary layer. From Equation
(26), we calculate the turbulent kinetic energy produc-
tion, PRODU, under breaking waves. Once PRODU is
known, Equation (25) gives the instantaneous values of
the turbulent kinetic energy, kt , under breaking waves, by
means of which we obtain the contribution to the eddy
viscosity vertical distribution due to the wave breaking,
νt,f (z, t) (from Equation (27)). From Equation (28), the
total eddy viscosity νt(z, t) is calculated. The instanta-
neous values of uk, uf , νt , H and 
 are used to calcu-
late the input variables of the morphodynamic model, as
shown in the following subsection.

2.2. Morphodynamicmodel

2.2.1. Suspended load
The differential form of the solid particle concentration
equation, in a Cartesian formulation, in which a Q3D
methodology is used, reads

∂C̃H̃
∂t

+ ∂

∂x

(∫ H̃

a
C̃(z)ũx(z) dz

)

+ ∂

∂y

(∫ H̃

a
C̃(z)ũy(z) dz

)

= ∂

∂x

(
ν̃t

∂C̃H̃
∂x

)
+ ∂

∂y

(
ν̃t

∂C̃H̃
∂y

)
− D + P (29)
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in which C̃(z) is the solid particle concentration averaged
on the wave period, H̃ is the water depth, ũx(z) and ũy(z)
are the wave averaged vertical distributions of the com-
ponents of the horizontal velocity vector �u(z) defined in
a Cartesian system of reference. The distance, a, from the
bottomdefines the region inwhich the bed load transport
develops; ν̃t is the depth and wave-averaged eddy viscos-
ity; D is the rate of the sediment deposition and P is the
rate of turbulent sediment pick-up. It must be noted that
the Q3D approach is used in Equation (29): on the left-
hand side of this equation, the second and the third terms
are calculated by the vertical distributions of velocity and
concentrations.

By writing in contravariant form (in the curvilinear
system of coordinates) the velocity vector �̃u that appears
in Equation (29), and by integrating this equation over
a generic surface element �A (whose contour line is
L), we obtain the following contravariant concentration
equation:∫∫

�A

∂C̃H̃
∂t

dA +
∫
L

[∫ H̃

a
C̃(z)ũr(z) dz

]
nr dL

−
∫
L
ν̃tH̃brk(C̃),knr dL

=
∫∫
�A

(P − D) dA (30)

in which �n is the outward normal vector to the con-
tour line L and ũr is the horizontal contravariant veloc-
ity vector averaged over the wave period. D and P are
expressed by

D = wsedC̃a (31)

P = wsedC̃R (32)

in which wsed is the sediment fall velocity, C̃a and C̃R
are, respectively, the actual and reference concentrations,
which are evaluated at height a = 2d50. A threshold value
of the sediment particle motion comes into the calcu-
lation of C̃R. In order to integrate Equation (30), the
calculation of C̃a and C̃R is needed and shownhereinafter.

The value of C̃a is taken as the lower boundary con-
dition of the turbulent suspended sediment diffusion
equation,

− C̃(z)wsed = ν̃t(z)
∂C̃(z)

∂z
(33)

and as the lower extreme of the integral that gives the
depth-averaged value of C̃(z).

C̃ = 1
H̃

∫ H̃

a
C̃(z) dz (34)

Thus, C̃a is calculated by an iterative procedure using
Equation (34), where the values of C̃ and ν̃t(z) are known
(from the previous time step).

The value of C̃R is obtained by wave-averaging its
instantaneous values CR(t), which are calculated as
(Rakha et al., 1997)

CR(t) = 0.331(|�θ | − θcr)
1,75

1 + (0.331/Cm)(|�θ | − θcr)
1,75 (35)

in which Cm is the maximum volumetric concentration
that can be reached, θcr is the parameter of stability of
Shield and |�θ | = |�θ(t)| is the parameter of mobility of
Shield, where �θ(t) is the bed shear stress induced by cur-
rent and wave. It must be noted that the instantaneous
value of the reference concentration (CR(t)) results in a
nonnull value only if the bed shear stress goes over the
θcr threshold value.

The turbulence induced by the breakers generally
occurs in the upper part of the water column, so it
should not influence the bottom concentration signifi-
cantly (Nielsen, 1992). Furthermore, the turbulence gen-
erated in the water surface by the wave breaking results
in more sediment being carried in suspension away from
the bed, while the sediment concentration near the bed
is still determined by the wave boundary layer (Deigaard
et al., 1986).

2.2.2. Bed load
In a Cartesian system of coordinates, the vector �̃qb of
the bed load transport is given by (Engelund & Fredsøe,
1976) as:

�̃qb = 1
T

∫ T

0

(
5
(
1 +

( π
6 β

|�θ | − θcr

))−1/4

·
(√

|�θ | − 0.7
√

θcr

)√(
ρs

ρw
− 1

)
Gd350

)
· �ua
|�ua| dt

(36)

in which β is the coefficient of the dynamic friction
and ρs/ρw is the ratio between the sediment and water
density.

The numerical solution of the concentration equation
admits an uprush boundary (see Figure 2) condition
given by the swash zone transport of sediment (Larson
&Wamsley, 2007; Nam, Larson, Hanson, & Hoan, 2009).
Along the uprush boundary, we define a system of Carte-
sian coordinates inwhich the line ofmaximumslope (off-
shore directed) identifies the x∗ axis. We indicate by �qnet
the wave-averaged net sediment transport components,
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Figure 2. Computational domain areas: Boussinesq equations (A–B–C–D–F); Advection-diffusion equation for suspended sediment
concentration and bed load transport (A–B–C–D); boundary condition for the advection-diffusion equation for suspended sediment
concentration (E); net sediment transport in the swash zone (F).

as given by Larson and Wamsley (2007)

qbnetx∗ = Kx∗
tan�m

tan2�m − ( dh/dx∗)2
u03

g

× (dh/dx∗ − tanβe) (37)

qbnety∗ = Ky∗
tan�m

tan2�m − (dh/dx∗)2
u02v0
g

(38)

in which �m is the moving grain friction angle, Kx∗ and
Ky∗ are coefficients, dh/dx and βe are, respectively, the
foreshore and the foreshore equilibrium slopes, and u0
and v0 are the scalar components in the local Cartesian
reference system of vector �u0, which represents the speed
of the wet and dry front.

2.2.3. Bedmorphological changes
The total transport is given by the sum of the bed load
transport, which takes into account the near bed trans-
port mechanism, and the suspended load transport. The
equation of the bed change expressed in a Cartesian
reference form is

∂zf
∂t

= − 1
1 − p

[(P − D) + ∇ · (̃�qb)] (39)

in which p is the porosity of the sediment and zf is the
elevation of the bed. The contravariant components of
the vector �̃qb are q̃kb(k = 1, 2), which are obtained by dot-
ting the vector �̃qb with the contravariant base vector �b(k).
The final contravariant formulation of Equation (39) in a
curvilinear coordinate system is

∂zf
∂t

= − 1
1 − p

[(P − D) + q̃kb,k] (40)

Let us indicate by �qS the net sediment transport aver-
aged over T, which represents the entire swash cycle
duration, and let t0 be the swash cycle duration at point

x∗ inside the uprush and backwash zone. Let �u0S be the
speed vector (whose components are u0S, v0S) of the wet
and dry front calculated by solving a Riemann problem.
The components of �qS are

qSx∗ (x
∗) = Kx∗

tan�m

tan2�m − (dh/dx)2
u0S3

g

× (dh/dx∗ − tanβe)
to
T

(41)

qSy∗ (x
∗) = Ky∗

tan�m

tan2�m − (dh/dx∗)2
u0S2v0S

g
to
T

(42)

The bed changes in the swash zone are given by

∂zf
∂t

= − 1
1 − p

qkS,k (43)

where qkS is the contravariant component of �qS.
From the friction velocity uf , using Equation (35) we

calculate the instantaneous value of the reference concen-
tration CR(t) and, from this, its averaged value over the
wave period C̃R. Equation (32) gives the sediment pick-
up rate,P, which appears in Equation (30). From the eddy
viscosity ν̃t(z), by solving the system of Equations (33)
and (34), we obtain the wave-averaged concentration of
suspended sediment C̃(z) and C̃a. Starting from thewater
depth H̃, the velocity ũr(z), the total eddy viscosity ν̃t(z)
and the source terms P, we calculate the wave and depth
averaged concentration of suspended sediment C̃ and the
sediment deposition rate, D, by solving Equation (30).
From the instantaneous value of the horizontal velocity
ukα , using Equation (35) we calculate the instantaneous
value of the bed load transport vector, �qb, and, from this,
its wave-averaged value �̃qb. The values of the terms P, D
and �̃qb are inserted into Equation (40) in order to update
the bed elevation in the region from the deep-water zone
to the surf zone (zones A-B-C-D in Figure 2).



404 F. GALLERANO ET AL.

In the swash zone, from the instantaneous values of
wave propagation velocity vector �u0S, we calculate the net
sediment transport vector �qS, which is averaged over sev-
eral swash cycles. This averaged value is introduced in
Equation (41), in order to update the bed elevation in the
swash zone (zone F in Figure 2).

The procedure by which the two models are cou-
pled is as follows. A morphological step is equivalent to
fulfillment of the following five-step sequence.

(1) The vertical distribution of the horizontal veloci-
ties, the free-surface elevation, the friction velocity,
the wave boundary layer, the eddy viscosity and the
reference concentration are calculated by the hydro-
dynamic model.

(2) The instantaneous hydrodynamic quantities are
averaged over T∗, which is 100–150 times the period
of the wave (Rakha et al., 1997).

(3) The equation for the concentration of solid particles
is integrated by using the wave averaged hydrody-
namic quantities calculated in step (2).

(4) C̃a is computed starting from the values of C̃, calcu-
lated in step (3).

The bed change equation uses the values of the reference
concentration, C̃R, actual concentration, C̃a, and bed load
transport, �̃qb, and gives the updating of the sea bottom for
the new morphological time step. We define as ‘morpho-
logical time step’ the time step of the integration of the
bed change equation. This time step is greater than the

Figure 3. Flow chart of the computational procedure.
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Boussinesqmodel time step integration. Themorpholog-
ical time step is obtained via a posteriori verification of the
numerical results. Themorphological time step is chosen
based on a trial-and-error procedure.

The abovementioned procedure is explained by the
flow chart shown in Figure 3. The value of the morpho-
logical time step is the result of a compromise. Values
of the morphological time step that are too small entail
excessive computational time; instead, values of the mor-
phological time step that are too big cause changes in the
bathymetry that are too sudden and do not establish a
realistic bed evolution dynamics.

3. Numerical scheme

Equations (14) and (15) are numerically integrated by
an original scheme with a fourth order of accuracy:
the shock-capturing methodology is based on genuinely
two-dimensional upwind-WENO reconstructions. Let
L(M1,M2) be the second side of Equation (15). Let
D(H,M1,M2) be the sum of the first four terms of the
second side of Equation (14) and let DB(H,M1,M2) be
the sum of the remaining terms on the second side of
Equation (14). The integration over [tn, tn+1] of Equa-
tions (14) and (15) reads

H̃(n+1)
i;j = H̃(n)

i;j − 1
�A

∫ tn+1

tn
L(M1,M2) dt (44)

D̃k(n+1)
i;j = D̃k(n)

i;j − 1
�A

∫ tn+1

tn
[D(H,M1,M2)

+ DB(H,M1,M2)] dt (45)

where H̃(n)
i;j and D̃k(n)

i;j are values of H(n)
i;j and Dk(n)

i;j aver-
aged over the surface element of area �A.

The discretization in time of Equations (44) and
(45) is performed by means of a Runge–Kutta proce-
dure belonging to the Strong Stability Preserving family
(SSPRK) (Spiteri & Ruuth, 2002), which can be written as

H̃(0)
i;j = H̃(n)

i;j ; D̃
k(0)
i;j = D̃k(n)

i;j (46)

H̃(p)
i;j =

p−1∑
q=0

{
pqH
(q)
i,j + �tϕpq[L(M1(q),M2(q))]} (47)

D̃k(p)
i;j =

p−1∑
q=0

{
pqD
k(p)
i,j + �tϕpq[D(H(q),M1(q),M2(q))

+ DB(H(p),M1(p),M2(p))]} (48)

H̃(n+1)
i;j = H̃(3)

i;j ; D̃
k(n+1)
i;j = D̃k(3)

i;j (49)

in which p = 1, 2, 3 and the values of 
pq and ϕpq
are found in Spiteri and Ruuth (2002). At every step of

the Runge–Kutta method, the velocity component, ũk, is
obtained by numerically solving the following equation:

D̃k = H̃(ũk + W̃
′k) (50)

The values of the velocity component at the cell cen-
troids, ũki;j, are introduced in the second-order finite-
difference discretization of DB(H,M1,M2). The remain-
ing terms on the second side of Equation (14) and the
term on the second side of Equation (15) are discretized
by a fourth-order genuinely two-dimensional upwind-
WENO scheme. The procedure at the basis of the numer-
ical scheme can be summarized as follows:

• A WENO procedure, based on genuinely two-
dimensional polynomials, reconstructs the point val-
ues of the variables at every intercell face of the com-
putational cells.

• These two point values are used as initial data for
an exact Riemann solver. The solution of this Rie-
mann problem gives updated values of the conserved
variables at the cell faces.

• These updated values are introduced in a fourth-order
quadrature rule to calculate the high-order approxi-
mation of L(M1,M2) and D(H,M1,M2) in Equations
(47) and (48).

3.1. 2DWENO reconstructions

The WENO procedures commonly adopted in lit-
erature for reconstructing the variable point values
on the cell faces are not genuinely multidimensional
because they are carried out by a sequence of con-
secutive one-dimensional reconstructions (dimension-
by-dimension reconstruction). In the dimension-by-
dimension approach, a first one-dimensional recon-
struction is carried out along the coordinate line ξ 1

in order to pass from cell-averaged values to values
that are averaged only over the coordinate line ξ 2;
a second one-dimensional reconstruction, performed
along the ξ 2 coordinate line, is then used to obtain
the point values of the conserved variables on the
cell face. In generalized curvilinear systems, the above
sequence of consecutive one-dimensional reconstruc-
tions can produce an amplification of the truncation
errors, such that the resulting errors could reach the
importance of the terms that arise from Taylor expan-
sions in the Boussinesq equations, thereby compromising
the accuracy of the numerical solution. In this paper,
in order to avoid this problem, we adopt a WENO
technique based on genuinely two-dimensional polyno-
mials for the point values calculation of H and Mk.
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Starting from H̃i;j and M̃k
i;j, (which represent the cell-

averaged values), the point values of the conserved vari-
ables (Hi+p;j+q and Mk

i+p;j+q with p = −1/2, 1/2 and
q = −1/2, 1/2) are reconstructed by using a combina-
tion of nine two-dimensional biquadratic interpolating
polynomials Pi+p;j+q(ξ

1, ξ 2) (with p = −1, 0, 1 and q =
−1, 0, 1) given by

Pi+p,j+q(ξ
1, ξ 2)

= b0 + b1(ξ 1 − ξ 1i ) + b2(ξ 2 − ξ 2i )

+ b3(ξ 1 − ξ 1i )(ξ 2 − ξ 2i ) + b4(ξ 1 − ξ 1i )2

+ b5(ξ 2 − ξ 2i )2 + b6(ξ 1 − ξ 1i )2(ξ 2 − ξ 2i )

+ b7(ξ 1 − ξ 1i )(ξ 2 − ξ 2i )2

+ b8(ξ 1 − ξ 1i )2(ξ 2 − ξ 2i )2

(51)

For each two-dimensional polynomial, the nine coeffi-
cients bm (with m = 0, . . . , 8) are calculated by simulta-
neously using the values of the conserved variables in a
two-dimensional stencil composed of nine (3×3) com-
putational cells. In order to obtain a fourth-order recon-
struction that is devoid of spurious oscillations,H andMk

are approximated by a convex combination Ri;j(ξ
1, ξ 2)

of the nine two-dimensional polynomials defined on a
wider two-dimensional stencil composed of 25 (5×5)
computational cells:

Ri;j(ξ 1, ξ 2) =
1∑

l,k=−1

ω
k,l
i,j Pi+k;j+l(ξ

1, ξ 2) (52)

In such a way, the variable point values on each face of
the computational cell Ii;j are reconstructed by simultane-
ously taking into account all the 25 cell-averaged values
that surround and include the Ii;j cell. In Equation (52),
ω
k,l
i,j (where k and l refer respectively to the ξ 1 and ξ 2

coordinates) are the nonlinear weights of the genuinely
two-dimensionalWENO reconstruction. Such nonlinear
weights are a function of the linear weights and indexes of
smoothness (calculated in order to avoid spurious oscil-
lations in the presence of discontinuities), according to
Gallerano, Cannata, and Lasaponara (2016b) and Levy,
Puppo, and Russo (2002).

4. Results

4.1. CRIEPI large wave flume experiments – Test 1–8

In this section, an experimental test case, extracted from
the Central Research Institute of Electric Power Industry
(CRIEPI) Test proposed by Kajima, Shimizu, Maruyama,
and Saito (1982), is numerically reproduced in order
to verify the proposed sediment transport model under
erosional regular waves.

This experimental test is referred to by the same
authors as CRIEPI Test 1–8, and reproduces erosive con-
ditions, over a time interval of 21 h, under a regular wave
of a height of 0.85m and a period of 3.0 s. The initial
profile is formed as a uniform slope of 1:20 and is com-
posed of coarse sand with a mean diameter of 0.47mm.
For the hydrodynamic model the time step is 0.005 s; the
spatial discretization step is 0.1m. A morphological time
step of 1.0 hours is adopted in order to simulate the bot-
tom change. In Figure 4, the comparison between bed
elevation change, with respect to the initial bottom pro-
file (dashed line), for the CRIEPI Test 1–8 obtained by
the numerical simulation (black line) and experimental
data (red line) is shown. As can be noted from the figure,
the proposed sediment transport model is able to con-
sistently predict the magnitude and extension of the bed
erosion and bed accretion areas.

In particular, approaching the shoreline, two different
areas can be seen from the numerical results: a first area
characterized by a bottom accretion around X = −22m,
which shows a 0.35m height bar, and a second area that
is more extended than the first and is characterized by a
0.25m-deep erosion located around X = −14m.

4.2. Test T1C1

In this section, the proposed model is validated by repro-
ducing the T1C1 experimental test of Gravens andWang
(2007). These authors carried out the T1C1 test in a lab-
oratory basin in which a breakwater is positioned 4m
away from the shoreline. The length of the breakwater
is 4m and its cross-section can be sketched by a trape-
zoid whose dimensions are lower base 1.5m, upper base
0.7m and high 0.25m. The experimental test was car-
ried out by generating random waves of significant wave

Figure 4. CRIEPI Test 1–8. Comparisonbetween thebedmorpho-
logical change calculated by the proposedmodel (solid black line)
and the experimental data (red line)with respect to the initial bot-
tom profile (dashed black line). Still water level (SWL) sketched by
a dashed black line.
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height,Hs = 0.26m; wave period, T = 1.5s; and incom-
ing angle of θ = 6.5°, and with sediment particles with
mean diameter d50 = 150 μm.

Figure 5 shows the computational domain (ABCD
area) adopted for this test, in which the area of the
laboratory basin is schematized by a dashed red rect-
angle (EFGH area). A grid spacing of �x = 0.06m
and �y = 0.045m is used. Simulation of the T1C1 test
is performed by generating, along the BC line, ran-
dom waves characterized by a JONSWAP spectrum with
Hs = 0.26m. At the side boundaries (AB and CD lines),
a null gradient in the normal direction is imposed for
the velocity and the free surface elevation, since the wave
fronts are normal to these boundaries during the simula-
tion. Throughout the numerical simulation, in the E–H
stretch of coast, a longshore current occurs with veloc-
ity values that are practically uniform along the paths.
This current velocity field comes very close to that pro-
duced in the laboratory during theT1C1 test. Concerning
the morphodynamic model, side boundary conditions
are defined by a null gradient of concentration and bed
load transport.

With reference to the T1C1 test, Figure 6 shows the
contour lines of the water depth at the starting con-
ditions and the traces of the two sections where the
laboratory measurements are taken. The time step cho-
sen for the two-dimensional phase-resolving model is
0.0058s. The bed change simulation is carried out in
190 morphological steps. The bed elevation variation in
every morphological step approximates the one occur-
ring in a real time interval of 60s (morphological time
step).

Figure 7 shows the simulated wave field for the T1C1
test. In Figure 8, the numerically obtained significant
wave height is compared with the experimental results:
the black line represents the results obtainedwith the pro-
posed numerical model, the circles represent the exper-
imental data and the green line represents the initial
bottom profile. Figure 8(a) and (b), respectively, refer

Figure 6. T1C1 test. Initial depth contour lines (grey lines) and
traces of comparison sections (dashed black lines).

Figure 7. T1C1 test. Instantaneous wave field.

to sections Y = 26m and Y = 22m, which intersect
the extremes of the breakwater. From these figures it
can be seen that the breakwater protects the onshore
area from the incoming waves, as demonstrated by the

Figure 5. T1C1 test. Computational domain for the proposed model (solid black line), boundaries of the laboratory basin (dashed red
line), breakwater (solid red).
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(a) (b)

Figure 8. T1C1 test. Comparison between the significant wave heights calculated by the proposed model (black lines) and the
experimental data (circles). Bottom profile (green line).

relevant decrease in the wave height onshore of the
breakwater.

Figure 9 shows the current velocity field, referring to
the initial condition of the bottom, obtained by averag-
ing over time the simulated instantaneous velocities. In
this figure, the vectors representing the current veloc-
ity values experimentally obtained by Gravens andWang
(2007) appear in bold. As shown in the figure, the sim-
ulated longshore current is partially intercepted and
diverted offshore by the breakwater. The presence of the
breakwater also induces a more complex structure of
the wave-averaged velocity field in the area between the
breakwater and the shoreline. It is in fact known that,
in this area, two vortices are formed in proximity of the
breakwater: one that rotates anticlockwise with the cen-
ter placed rear of the breakwater at aboutY = 25.5m and
X = 2.5m, and a second that rotates clockwise, larger
than the first, whose center is closer to the coastline
(Y = 20.5m and X = 1.5m). In the area rear of the
breakwater, the longshore current is confined between
those two vortex structures. Onshore of the breakwa-
ter, the longshore current first undergoes (in the current
direction) an increase of velocity in the region closest

Figure 9. T1C1 test. Comparison between the wave-averaged
velocity field calculated by the proposed model (black vectors)
and the experimental data (blue vectors).

to the shoreline, and is then diverted, due to the pres-
ence of the second vortex, toward the breakwater; from
Y = 22m, the current reverts parallel to the shoreline.
As underlined by Nam et al. (2009), the presence of the
two vortices, in a position not symmetrical with respect
to the center of the breakwater, is a typical phenomenon
of current velocity fields produced onshore of the break-
water by waves obliquely incident to the shoreline. In
Figure 9, the vectors in bold, representing the experi-
mentally measured current velocities, reveal two zones
onshore of the breakwater where the current velocities
are close to zero: a first current stagnation area is located
close to the breakwater and is approximately centered
at Y = 25.5m and X = 2.5m; a second current stag-
nation area is closer to the shoreline and is approxi-
mately centered in Y = 20.5m and X = 1.5m. The cen-
ters of the two vortices produced by numerical simulation
described above (in which the current velocity is zero)
correspond with the center of the current stagnation
areas experimentally measured.

In Figure 10, the longshore component of the sim-
ulated velocity field is compared with the experimental
results. The numerically simulated current velocity is
slightly underestimated in the region between X = 12m
and X = 7m. From Figure 10(a), it can be observed that
onshore of the breakwater (2m < X < 4m) the numer-
ically calculated current velocities are slightly negative
where the experimental data indicate values almost equal
to zero. Close to the shoreline (X < 2m), in comparison
to the laboratorymeasurements, the simulated longshore
current is slightly overrated. Small discrepancies between
numerical and experimental results can also be observed
in Figure 10(b) for X < 3m, where the simulated long-
shore current is slightly overrated in the area closest to
the breakwater (X > 2m) and changes direction near the
shoreline (X < 1m).

Figure 11 compares the simulated cross-shore compo-
nent of the velocity current with the experimental data.
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(a) (b)

Figure 10. T1C1 test. Comparison between the longshore current calculated by the proposed model (black lines) and the experimental
data (red circles). Bottom profile (green line).

(a) (b)

Figure 11. T1C1 test. Comparison between the cross-shore current calculated by the proposedmodel (black lines) and the experimental
data (red circles). Bottom profile (green line).

Experimental and numerical results show good agree-
ment. Some differences can be observed onshore of the
breakwater where, asmentioned before, the experimental
data show a current stagnation area while the numerical
simulations produce a small vortex.

In order to assess a quantitative evaluation of the reli-
ability of the proposed model, an estimate is performed
of the percentage error by which the numerical results
(in terms of significant wave height, cross-shore velocity
and long-shore velocity) differ from those experimentally
obtained in the T1C1 test carried out by Gravens and
Wang (2007). For each of the above quantities, the Mean
Absolute Percentage Error (MAPE) is calculated as

MAPE = 100%
N

N∑
i=1

∣∣∣∣φi − ηi

φi

∣∣∣∣ (53)

In whichN represents the number of measurement loca-
tions where the experimental data are provided, and φi,
ηi are, respectively, the experimental and numerical val-
ues of the generic quantity in the i-thmeasurement point.
In Table 1, the computed errors in terms of significant
wave height, and cross-shore and long-shore velocity are
reported. Table 1 shows that the error in terms of sig-
nificant wave height is 14%, whilst the errors in terms
of cross-shore and long-shore velocity are less than 40%.

Table 1. T1C1 test. MAPE between numerical and experimental
results in terms of significant wave height, cross-shore velocity
and long-shore velocity.

Hs [m] V_long [m/s] V_cross [m/s]

MAPE [%] 14 37 39

The higher discrepancies in the experimental results
observed for the cross-shore and long-shore velocities
can be explained by taking into account that the long-
shore current produced in the experiment is stronger
than the one numerically generated. In fact, in the exper-
iment the long-shore current is enforced by means of a
pumping and recirculation system, whilst in the simula-
tion it is exclusively generated by the obliquely breaking
waves.

Contour lines of the water depth after 190 simulated
minutes, for the T1C1 test, are shown in Figure 12. Grey
lines represent the contour line of the water depth exper-
imentally produced by Gravens and Wang (2007), blue
lines represent those obtained by the proposedmodel and
magenta lines represent those obtained with the model
proposed by Nam, Larson, Hanson, and Hoan (2011).
By comparing Figure 12 (blue lines) and Figure 6, the
bed morphological changes produced by the proposed
model can be seen. Onshore of the breakwater, between
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Figure 12. T1C1 test. Comparison between the depth contour
lines calculated by the proposed model (blue lines), the model
proposedbyNam etal. (2011) (magenta lines) and the experimen-
tal data (grey lines).

Y = 27m and Y = 25m, an advance toward the break-
water of the 0.1m depth contour line indicates the pres-
ence of a bed accretion area: this accumulation is caused
by the sediment put into suspension in the area updrift
the breakwater near the shoreline that is prone to precip-
itating by the reduction of the velocity values related to
the first vortex. Two troughs can also be seen near the
breakwater corners.

Figure 12 also shows that the results obtained from
Nam et al.’s (2011) model and the experimental data
are in quite close agreement, and that the main differ-
ences correspond with the advancing shoreline onshore
of the breakwater and near the top corners of the same.
In these areas, where high sediment deposition (onshore
of the breakwater) and intense sediment troughing (near
the corners of the breakwater) take place, the depth con-
tour lines obtained by the proposed model better match
the experimental data compared to the model of Nam
et al. (2011). This better agreement can be justified by
the fact that the model of Nam et al. (2011) introduces
some simplifications with respect to the proposedmodel.
In fact, thismodel is composed of a 2DWAmodel for cur-
rent velocity simulations (based on the use of radiation
stresses), by a sediment transport model which solves
the concentration equation that does not adopt a Q3D
approach and assumes, for the eddy viscosity, a uniform
distribution along the depth.

4.3. Long-term bottom changes

In this subsection, the proposed model is applied to the
real case study of Pescara harbor (in Italy). In 1997, a
detached breakwater was constructed in front of Pescara
harbor. In Figure 13, the breakwater is shown and the
coastal structures and shoreline are sketched, respec-
tively, by red lines and a dashed black line. In 1997 and
2000, two measurement campaigns were performed by

Figure 13. Pescara harbor case study. Coastal region close to
Pescara harbor at the end of 1997.

MELPS (2008b): in Figure 14(a) and in Figure 14(b),
contour lines of the water depth are shown. In the area
between the breakwater and the canal port, the sedi-
ment volume (accumulated from 1997 to 2000 and esti-
mated by the two measurement campaigns) is about
40,000m3/year.

The proposed model is tested via numerical simula-
tion of the bottom changes in front of Pescara harbor
in Italy related to the three years following construc-
tion of the detached breakwater. The numerical simu-
lations were performed using, as input data for wave
motion forces, the available data on occurrence fre-
quency, period and wave height in the region of Pescara
harbor (MEPLS, 2008a). Such data are related to a mea-
surement point located about 500m northwards of the
detached breakwater and are considered, in the above-
mentioned weather and sea study, as representative of
wave climate in the sea region in front of Pescara harbor.
Figure 15 shows the polar representation of the direction
of the incoming waves representative of Pescara’s annual
wave climate: two preeminent directions are identified
as 345°N–15°N (primary sector) and 65°N–95°N (sec-
ondary sector). According to the MEPLS (2008b) study,
the sediment transport produced by the secondary-sector
incoming waves is almost completely intercepted by the
touristic port (Figure 13), so it does not significantly
influence the sedimentation phenomena close to Pescara
harbor. Furthermore, according to the MEPLS (2008b),
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(a) (b)

Figure 14. Pescara harbor case study. Depth contour lines in the coastal region close to Pescara harbor in 1997 (a) and 2000 (b).

the sediment transport produced by the primary-sector
incomingwaves is bound to deposit onshore of the break-
water, causing silting-up phenomena in the area that
stands between the canal port and the breakwater. Such
incoming waves are marked by a significant wave height
in the range of 1m and 2m, which have an occurrence
frequency no fewer than 320hours/year. Consequently,
in order to achieve results that are representative of
Pescara’s annual wave climate, the bottom change simu-
lation is performed by generating random waves incom-
ing from 0°N, represented by a spectrum belonging to
the JONSWAP type characterized by a significant wave

Figure 15. Pescara harbor case study. Directional annual distri-
bution polar histogram of the wave events in the coastal region
in front of Pescara harbor.

height equal to 1.5m, which act for 320 h/year for a total
of 960 simulated hours. The equations ofmotion (Section
2) are discretized on a curvilinear grid whose boundaries
have been established by applying a shoaling-refraction
model (Cialone & Kraus, 1987) on a wider coastal region
with respect to the one used in the hydrodynamic model.
The obtained wave rays define the northwest and south-
east boundaries of the computational grid, and the deep

Figure 16. Pescara harbor case study. Instantaneous wave field
two-dimensional representation.
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water wave front defines the northeast boundary. The
beach is taken into consideration by means of a wet and
dry procedure, while over the structure borders reflec-
tive conditions are adopted. The time step used for the
hydrodynamic model is �t = 0.1s.

From Figure 16, diffraction phenomena occurring in
the proximity of the detached breakwater edges, shoal-
ing phenomena and then wave breaking with a wave
height decay can be seen. Furthermore, corresponding to
the vertical walls protecting the touristic port, reflection
phenomena are evident.

Figure 17 shows the fluid dynamic field produced
by the proposed model. In the same figure, the three
blue circles indicate the points at which a comparison
between the simulated and measured velocities is carried

Figure 17. Pescara harbor case study. Current velocity field
obtained by the proposed model (black vectors) and measure-
ment points (blue circles).

Table 2. Pescara harbor case study. Comparison between current velocities calculated by the proposedmodel and experimental data in
the three measurements points in the coastal region close to Pescara harbor.

Coordinates Experimental Data Numerical Results

Point of measure X [m] Y [m] Vx [m/s] Vy [m/s] V [m/s] Vx [m/s] Vy [m/s] V [m/s]

V1 585 805 −0.035 0.326 0.328 −0.045 0.265 0.269
V2 705 835 −0.043 0.179 0.184 −0.053 0.236 0.242
V3 820 880 −0.217 0.649 0.684 −0.175 0.503 0.533

out (Table 2). This comparison indicates that the com-
puted longshore current is in good agreement with the
measured one.

Figure 18 shows the comparison between the contour
lines of thewater depth produced by the numericalmodel
after three years (blue lines) and the corresponding mea-
sured data (black lines). The agreement is good in most
of the computational domain. Some differences between
numerical results and measurement data are to be seen
in the lower part of the computational domain, near the
northwest extreme of the detached breakwater. In this
part of the computational domain, experimental mea-
surements indicate the permanence of a restricted area
characterized by the 6m-depth contour line. The numer-
ical results indicate a slight overestimation of the silting
up in this area and a slight underestimation of the silting
up in the part of the computational domain right above
the aforementioned area. In order to provide a quantita-
tive evaluation of the reliability of the proposedmodel for
long-term prediction of bed morphology evolution, an
estimate is performed of the percentage error by which
the numerical results (in terms of water depth) differ

Figure 18. Pescara harbor case study. Comparison between the
numerically calculated depth contour lines at the end of the third
simulated year (blue lines) and the corresponding measured data
(black lines).
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from those obtained by the measurement campaign. The
water depth MAPE is calculated by means of Equation
(53) and its value is found to be about 10%. Furthermore,
the numerically calculated volume of sediment settled
in front of Pescara harbor (from 1997 to 2000) is about
37,000m3/year, which is comparable with the measured
one (40,000m3/year). These results show that the numer-
ical simulation suitably reproduces the bottom changes in
the coastal region of Pescara.

The morphological time step adopted for the Pescara
case study was chosen following comparison between the
results of different simulations carried out with various
values of the morphological time step, ranging between
0.5 and 12 hours. It turns out that when the morphologi-
cal time step value is less than 4 hours, no significant dif-
ferences in the bed changes are observed at the end of the
120 simulated hours. For morphological time step values
included between 4 and 8 hours, the differences among
the numerical results are less than 6%. These differences
become significant and rapidly diverge formorphological
time step values greater than 10 h.

5. Conclusions

A model for the bottom change simulations in coastal
areas with complex shorelines has been proposed. The
contravariant equations of motion have been presented
in a new formulation characterized by the absence of
the Christoffel symbols, in order to minimize trunca-
tion errors that arise in the calculation of the hydro-
dynamic variables on generalized curvilinear grids. The
sediment transport and bed changes have been calculated
by a suspended sediment advection-diffusion equation
expressed in an integral contravariant form and inte-
grated by aQ3D approach. The proposedmodel has been
validated against experimental tests and by applying it
to the real case study of Pescara harbor (in Italy). The
close accord between the measured data and the numeri-
cal results indicates the capacity of this model to simulate
long-term bed changes in sea regions characterized by
complex-shaped coastlines.
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