We give an overview of numerical methods for first-order Hamilton–Jacobi equations. After a short presentation of the theory of viscosity solutions, we show their link with entropy solutions of conservation laws. Then, we review theory and construction of monotone numerical methods in finite difference and semi-Lagrangian form, also providing a numerical test which shows the main features of this class of schemes. Finally, we sketch the main ideas behind high-order methods and more recent developments.
Numerical methods for Hamilton–Jacobi type equations / Falcone, M.; Ferretti, R.. - 17(2016), pp. 603-626. - HANDBOOK OF NUMERICAL ANALYSIS. [10.1016/bs.hna.2016.09.018].
Numerical methods for Hamilton–Jacobi type equations
Falcone M.
;Ferretti R.
2016
Abstract
We give an overview of numerical methods for first-order Hamilton–Jacobi equations. After a short presentation of the theory of viscosity solutions, we show their link with entropy solutions of conservation laws. Then, we review theory and construction of monotone numerical methods in finite difference and semi-Lagrangian form, also providing a numerical test which shows the main features of this class of schemes. Finally, we sketch the main ideas behind high-order methods and more recent developments.File | Dimensione | Formato | |
---|---|---|---|
Falcone_Numerical-Methods_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF | Contatta l'autore |
Falcone_frontespizio_Numerical-Methods_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
7.18 MB
Formato
Adobe PDF
|
7.18 MB | Adobe PDF | Contatta l'autore |
Falcone_Numerical-Methods_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
362.31 kB
Formato
Adobe PDF
|
362.31 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.