We present an abstract convergence result for the fixed point approximation of stationary Hamilton Jacobi equations. The basic assumptions on the discrete operator are invariance with respect to the addition of constants, epsilon-monotonicity and consistency. The result can be applied to various high-order approximation schemes which are illustrated in the paper. Several applications to Hamilton Jacobi equations and numerical tests are presented.

Value iteration convergence of ε-monotone schemes for stationary Hamilton-Jacobi equations / Bokanowski, Olivier; Falcone, Maurizio; Ferretti, Roberto; Grüne, Lars; Kalise, Dante; Zidani, Hasnaa. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 35:9(2015), pp. 4041-4070. [10.3934/dcds.2015.35.4041]

Value iteration convergence of ε-monotone schemes for stationary Hamilton-Jacobi equations

FALCONE, Maurizio;FERRETTI, Roberto;
2015

Abstract

We present an abstract convergence result for the fixed point approximation of stationary Hamilton Jacobi equations. The basic assumptions on the discrete operator are invariance with respect to the addition of constants, epsilon-monotonicity and consistency. The result can be applied to various high-order approximation schemes which are illustrated in the paper. Several applications to Hamilton Jacobi equations and numerical tests are presented.
2015
fixed point approximation schemes; Hamilton-Jacobi equation; high-order methods; ε-monotonicity; discrete mathematics and combinatorics; applied mathematics; analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Value iteration convergence of ε-monotone schemes for stationary Hamilton-Jacobi equations / Bokanowski, Olivier; Falcone, Maurizio; Ferretti, Roberto; Grüne, Lars; Kalise, Dante; Zidani, Hasnaa. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 35:9(2015), pp. 4041-4070. [10.3934/dcds.2015.35.4041]
File allegati a questo prodotto
File Dimensione Formato  
Bokanowski_Value-iteration_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 750.01 kB
Formato Adobe PDF
750.01 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/961850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact