We consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We then characterise Gorenstein-projective modules over the path algebra RQ in terms of the corresponding quiver representations over R, generalizing the work of X.-H. Luo and P. Zhang to the case of not necessarily finitely generated Q-modules. The proofs are based on Model Category Theory. In particular we endow the category Rep(Q, R) of quiver representations over R with a cofibrantly generated model structure, and we recover the stable category of Gorenstein-projective R-modules as the homotopy category Ho(Rep(Q,R)).
Quiver representations and Gorenstein-projective modules / Meazzini, Francesco. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - ELETTRONICO. - 42:(2021), pp. 1-33.
Quiver representations and Gorenstein-projective modules
MEAZZINI, FRANCESCO
2021
Abstract
We consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We then characterise Gorenstein-projective modules over the path algebra RQ in terms of the corresponding quiver representations over R, generalizing the work of X.-H. Luo and P. Zhang to the case of not necessarily finitely generated Q-modules. The proofs are based on Model Category Theory. In particular we endow the category Rep(Q, R) of quiver representations over R with a cofibrantly generated model structure, and we recover the stable category of Gorenstein-projective R-modules as the homotopy category Ho(Rep(Q,R)).File | Dimensione | Formato | |
---|---|---|---|
Meazzini_Quiver-representations_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
447.9 kB
Formato
Adobe PDF
|
447.9 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.