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Quiver representations and Gorenstein-projective modules

Francesco Meazzini

Abstract. Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the
category of quiver representations over R with a model structure, whose homotopy category is
equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ.

As an application, we then characterize Gorenstein-projective RQ-modules in terms of
the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to
the case of not necessarily finitely generated RQ-modules, and partially recover results due to
Enochs-Estrada-Garćıa Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem
is completely different since the proofs mainly rely on model category theory.
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1. Introduction

The notion of finitely generated Gorenstein-projective modules dates back to 1966.
Following Auslander [1], a finitely generated module M over a commutative and
Noetherian ring k is called Gorenstein-projective if it satisfies the conditions below:

• Extik(M,k) = Extik(Homk(M,k), k) = 0 for all i > 0,

• the natural biduality homomorphism M → Homk(Homk(M,k), k) is an iso-
morphism.

We will denote by Gproj(k) the full subcategory of left k-modules Mod(k),
whose objects are finitely generated Gorenstein-projective modules. This notion
extends the one of finitely generated projective ones, and led Auslander to intro-
duce the notion of G-dimension for any finitely generated module M , which is
defined to be the minimal length of a “Gorenstein-projective resolution” of M , see
[1]. Subsequently Auslander and Bridger developed the theory only assuming the
ring k to be associative and both left and right Noetherian, see [2].
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Few years later Iwanaga introduced the general notion of Gorenstein ring (see
[20] and [21]) generalizing the definition of the commutative case. Some authors
refer to non-commutative Gorenstein rings as Iwanaga-Gorenstein rings. Exam-
ples of Gorenstein rings are quasi-Frobenius rings and group rings k[G] for any
commutative Gorenstein ring k and any finite group G, see [6].

Auslander’s notion of finitely generated Gorenstein-projective modules still
plays an interesting role in both Algebra and Geometry. For instance, a famous
result due to Buchweitz [4] states an equivalence of categories

Db
sing(k) ' Gproj(k)

where:

1. k is a (not necessarily commutative) Gorenstein ring,

2. Db
sing(k) denotes the category of singularities, i.e. the Verdier quotient of the

bounded derived category Db(mod(k)) modulo the subcategory of perfect
complexes, and mod(k) denotes the category of finitely generated k-modules,

3. Gproj(k) denotes the stable category of finitely generated Gorenstein-proje-
ctive k-modules: its objects are the same as Gproj(k), while the morphisms
are defined as

HomGproj(k)(M,N) =
HomGproj(k)(M,N)

{f : M → N | f factors trough a projective k-module}
.

Nevertheless, at that time the so-called Gorenstein homological algebra still pre-
sented the problem of being generalized to not necessarily finitely generated mod-
ules.

In 1995, in [7], Enochs and Jenda defined Gorenstein-projective and Gorenstein-
injective modules over an arbitrary associative ring k.

Definition 1.1. Let k be an associative ring. A k-module M ∈Mod(k) is called
Gorenstein-projective if there exists an exact sequence of projective modules

· · · → P−1 d−1

−−→ P 0 d0

−→ P 1 → · · ·

that remains exact under the functor Hom(−, P ) for every projective k-module
P ∈Mod(k), and such that M ∼= ker{d0}.

Dually, M ∈ Mod(k) is called Gorenstein-injective if there exists an exact
sequence of injective modules

· · · → J−1 d−1

−−→ J0 d0

−→ J1 → · · ·

that remains exact under the functor Hom(J,−) for every injective k-module J ∈
Mod(k), and such that M ∼= ker{d0}.
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Finally Avramov, Buchweitz, Martsinkovsky, and Reiten proved that over an
associative ring k which is both left and right Noetherian, for any finitely gener-
ated k-module, Definition 1.1 and Auslander’s notion of Gorenstein-projectivity
coincide, see [3]. To the author knowledge [3] is still not published. With regard
to the result mentioned above we then refer to [5], where it was included (see
Theorem 4.2.6) by Christensen for a commutative ring k, but it is straightforward
to check that the argument works also in the general case.

The basic properties of Gorenstein-projective and Gorenstein-injective modules
were then investigated by Enochs and Jenda. We refer to [8] for a complete
exposition on the subject.

In general, the problem of explicitly describing Gorenstein-projective k-modules
presents several difficulties, but for particular choices of the base ring k the situa-
tion becomes extremely simple. For instance, if k is a quasi-Frobenius ring (such
as k = C[ε], the algebra of dual numbers) then every k-module is Gorenstein-
projective, namely Mod(k) = GProj(k). During the last decade, authors tried
to avoid problems related to the base ring, trying to increase their understanding
of the class of Gorenstein-projective k-modules through the information they had
about the same class over a simpler ring R. The key in this approach relies on the
equivalence of categories

Rep(Q, R) 'Mod(Λop)

where Q is a finite acyclic quiver, Λop is the (opposite) path algebra of Q over
a unitary ring R, and Rep(Q, R) denotes the category of representations of Q
over R. It is worth noticing that even if R = C[ε] is the self-injective algebra
of dual numbers, the path algebra Λop is a non-commutative 1-Gorenstein ring
(see Lemma 4.5 below). Hence, the hope is to find an explicit description for the
subcategory GProj(Λop) ⊆ Mod(Λop) in terms of quiver representations with
values in the easier class GProj(C[ε]) = Mod(C[ε]) through the equivalence of
categories above. This approach has been followed in a very general setting by
Luo and Zhang in [22]. More precisely, they restrict their attention to the class
of finitely generated Gorenstein-projective Λop-modules, but on the other hand
their result allows R to be any finite-dimensional algebra over a field. As an ap-
plication we extend their result to the whole category of Gorenstein-projective
Λop-modules, whenever R is a quasi-Frobenius ring, see Corollary 4.7. It is impor-
tant to point out that Gorenstein-projective modules have already been described
by Enochs, Estrada and Garćıa Rozas, [9, Corollary 6.4], if the ring is Gorenstein;
later Eshraghi, Hafezi and Salarian, [10], obtained the same characterization for
any ring. The main innovation of this paper concerns the different approach to
the problem, which does not involve standard techniques of quiver representations,
but relies instead on model category theory.

The reason for our assumption on R is not technical, meaning that up to mild
arrangments our argument works in a more general setting (namely when R is a
possibly non-commutative Gorenstein ring, see Remark 2.21). Nevertheless, if R
is quasi-Frobenius, the class W of Reedy weak equivalences in Rep(Q, R) admits
an easy characterization (see Theorem 2.20), and the stable category GProj(Λop)
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is equivalent to the localization Rep(Q, R)[W−1]. Moreover, the RP -cofibrant
R-representations can be more easily described, see Theorem 2.20. In particular,
when R = C[ε] is the algebra of dual numbers, the stable category Gproj(Λop) of
finitely generated Gorenstein-projective Λop-modules has been deeply investigated
in [26].

The plan of the paper is as follows. We begin Section 2 by recalling the stable
model structure of modules over a quasi-Frobenius ring. Here we only assume the
reader to be familiar with the basic notions of model category theory, for which we
refer to [14, 16]. We proceed by briefly surveying the basic definitions concerning
quiver representations in order to obtain our first result, which states the existence
of a model structure on the category Rep(Q, R) of quiver representations over a
quasi-Frobenius ring R.

Theorem 1.2 (see Theorem 2.20). Let Q be a finite acyclic quiver, and let R
be a quasi-Frobenius ring. Then the category Rep(Q, R) admits a model struc-
ture, called the Reedy projective model structure, where a morphism between R-
representations M → N is:

1. a weak equivalence (called Reedy stable equivalence) if it is a pointwise stable
equivalence in Mod(R), i.e. if for every vertex j ∈ Q0 the morphism Mj →
Nj is a stable equivalence of R-modules,

2. a fibration (called RP -fibration) if it is a pointwise surjection in Mod(R),
i.e. if for every vertex j ∈ Q0 the morphism Mj → Nj is surjective,

Moreover, an R-representation M is RP -cofibrant if and only if for every vertex
j ∈ Q0 the natural morphism of R-modules⊕

α∈Q1
τ(α)=j

Mσ(α) →Mj

is injective.

The importance of the above result lies in the explicit characterization of the
RP -cofibrant representations; these will correspond to Gorenstein-projective Λop-
modules.

In Theorem 2.20 we also give a characterization of cofibrations in the model
structure above, and we describe a dual model structure, which will be called
the Reedy injective model structure. Except for the explicit description of cofi-
brant objects, the result above almost immediately follows from the standard
Reedy model structures on categories of diagrams (see Theorem 2.14), whence we
decided to preserve the name. This result plays a crucial role in what follows,
since the cofibrant R-representations corresponds to Gorenstein-projective mod-
ules over the (opposite) path algebra of Q over R, giving an explicit description of
such modules in terms of Q. It should be noticed that finitely generated cofibrant
R-representations are precisely the so-called monic representations introduced by
Luo and Zhang in [22].



Quiver representations and Gorenstein-projective modules 5

The purpose of Section 3 is to find a different description of stable equivalences
and Reedy stable equivalences, in order to prove the main results in the following
sections. We also investigate the relation between projective R-representations
and cofibrant ones. We prove that projective R-representations are just cofibrant
R-representations which are vertexwise projective over R.

Lemma 1.3 (see Lemma 3.4). Let Q be a finite acyclic quiver, and let R be a
quasi-Frobenius ring. Then the following are equivalent for an R-representation
M .

1 M is a projective object in Rep(Q, R),

2 M is RP -cofibrant and Mj is a projective R module for every j ∈ Q0.

Lemma 3.4 also gives an equivalent description for injective R-representations
in terms of RI-fibrant ones.

In Section 4 we present our main results. First we recall an important result due
to Hovey, [17], where the category of modules over a (not necessarily commutative)
Gorenstein ring G is endowed with a model structure in which cofibrant objects
are precisely the Gorenstein-projective G-modules. We proceed by showing that,
under mild assumptions, the (opposite) path algebra Λop of a quiverQ over a quasi-
Frobenius ring R is 1-Gorenstein (see Lemma 4.5). In particular, this permits to
transfer Hovey’s model structure on the category of R-representations ofQ through
the well known equivalence Rep(Q, R) ' Mod(Λop). We then prove our main
theoretic result, which will lead immediately to the main application of the paper,
see Corollary 1.5.

Theorem 1.4 (see Theorem 4.6). Let Q be a finite acyclic quiver and let R be a
quasi-Frobenius ring. Then the (transferred) Hovey-projective model structure on
Rep(Q, R) and the Reedy-projective model structure coincide.

The reader may notice that Theorem 4.6 presents a dual statement about the
Hovey-injective model structure and the Reedy-injective one. As an immediate
consequence of the theorem above, we obtain that the cofibrant objects with re-
spect to the Hovey model structure (i.e. the Gorenstein-projective Λop-modules)
correspond to the RP -cofibrant representations, as explicitly stated below.

Corollary 1.5 (see Corollary 4.7). Let Q be a finite acyclic quiver and let R be a
quasi-Frobenius ring. Consider the path algebra Λ = RQ.

A module M ∈ Mod(Λop) is Gorenstein-projective if and only if the corre-
sponding R-representation M ∈ Rep(Q, R) satisfies the following condition: the
morphism of R-modules ⊕

α∈Q1
τ(α)=j

Mσ(α) →Mj

is injective for every vertex j ∈ Q0.
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Again, Corollary 4.7 states a dual result, characterizing Gorenstein-injective
Λop-modules as RI-fibrant R-representations. The equivalence Rep(Q, R) '
Mod(Λop) restricts to an equivalence of categories rep(Q, R) ' mod(Λop) be-
tween finitely generated representations overR and finitely generated Λop-modules.
In particular, we recover the characterization already obtained in [9, 10, 22]; notice
that the proofs of the cited papers are based on a completely different point of
view.

In Section 5 we investigate the main properties of the homotopy category
Ho(Rep(Q, R)), in particular we give an elementary proof that there exist equiv-
alences of triangulated categories

GProj(Λop) ' Ho(Rep(Q, R)) ' GInj(Λop)

where GProj(Λop) denotes the stable category of Gorenstein-projective Λop-mo-
dules while, respectively, GInj(Λop) denotes the stable category of Gorenstein-
injective ones.

2. Model structures on quiver representations over a quasi-
Frobenius ring

This section is devoted to the description of two model structures on the category
of quiver representations over a quasi-Frobenius ring. As we will see, this yields
two (nontrivial) model structures on the category of modules over a large class of
(not necessarily quasi-Frobenius) rings, see Theorem 4.4. If not specified, modules
are assumed to be left modules. The category of left R-modules will be denoted
by Mod(R) for any unitary (not necessarely commutative) ring R. Then the
category Mod(Rop) is the category of right R-modules. We stress the fact that
we do not restrict our interest to finitely generated modules. We begin by recalling
the standard model structure on the category of modules over a quasi-Frobenius
ring, which is described in [16], and in a more general setting in [24].

Definition 2.1. A Noetherian (not necessarely commutative) ring R is quasi-
Frobenius if it is injective both as a left and right R-module.

In [11, 12] Faith and Walker proved that the following conditions are equivalent:

1 R is quasi-Frobenius,

2 each projective right R-module is injective,

2* each injective right R-module is projective,

3 each injective left R-module is projective,

3* each projective left R-module is injective.
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It follows that a Noetherian ring R is quasi-Frobenius if and only if the classes of
projective and injective R-modules coincide.

One of the more interesting classes of quasi-Frobenius rings is the one of self-
injective algebras over a field K. Recall that a commutative K-algebra R is called
self-injective if it is an injective R-module. Examples of self-injective C-algebras

are C[t]
(tn) , n ∈ N.

Recall that given morphisms f, g : M → N of R-modules, then f is called stably
equivalent to g if the map (f − g) factors through a projective R-module.

Definition 2.2. Let R be a ring. The stable category of R-modules is the category
Mod(R) whose objects are left R-modules and whose morphisms are stable equiv-
alence classes of morphisms in Mod(R). We shall call a morphism in Mod(R) a
stable equivalence if its class represents an isomorphism in Mod(R).

Remark 2.3. We clearly have a functor γ : Mod(R) → Mod(R) that is the
identity on objects. The category Mod(R) satisfies the following universal prop-
erty. Given a category C and a functor F : Mod(R) → C such that for every

projective/injective R-module M there exists an isomorphism F (M)
∼=−→ F (0) in

C, then there exists a unique functor G : Mod(R)→ C such that F = G ◦ γ.

Theorem 2.4 ([16, Theorem 2.2.12]). Suppose R is a quasi-Frobenius ring. Then
there is a model structure on Mod(R), where the cofibrations are injections, the
fibrations are surjections, and the weak equivalences are the stable equivalences.

Notice that in the model structure of Theorem 2.4 every R-module is both
fibrant and cofibrant, i.e. the morphism 0→M is a cofibration and the morphism
M → 0 is a fibration for every module M ∈Mod(R).

We now briefly recall the basic notions concerning quiver representations.
A quiver can be simply understood as an oriented graph; more precisely a

quiverQ is the data of two setsQ0 andQ1, together with two maps σ, τ : Q1 → Q0.
Given a quiver Q we shall call Q1 the set of arrows, and Q0 the set of vertices. We
will denote by σ, τ : Q1 → Q0 the source and target map respectively. Therefore
an arrow is an element α ∈ Q, and may be also denoted by σ(α)

α−→ τ(α). A quiver
Q will be called acyclic if it contains no closed paths, i.e. it does not exist a (non

trivial) path i0
f1−→ i1 → · · · → in−1

fn−→ in such that i0 = in, for any n ≥ 1. In the
literature, acyclic quivers are also called directed (see e.g. [26]), while the name
acyclic can be found in [22], for example. Since acyclic quivers will be dealing
with direct and inverse categories, we will never use the name “directed quiver”.
Example 2.10 and Proposition 2.12 will clarify our choice.

Definition 2.5. Let s→ t be a morphism in a small category C. A factorization

s
f1−→ · · · fn−→ t

is called a trivial factorization if at least n − 1 out of {fi}i∈{1,...,n} are identity
morphisms in C. A non-identity morphism in C is called irreducible if it does not
admit any (non trivial) factorization in C.
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We shall remark that by definition identity morphisms are not considered
irreducible morphisms.

Definition 2.6. Let s→ t be a non-identity morphism in a small category C. A
factorization

s
f1−→ · · · fn−→ t

of s→ t is called irreducible if each morphism fi is irreducible in C.

Definition 2.6 should not be compared with the notion of irreducible morphism
in Auslander-Reiten theory, see e.g. [13, Definition 4.3]. Recall that a category C
is said to be finite if Ob(C) is a finite set, and for every s, t ∈ C the set HomC(s, t)
is finite. Clearly, given a finite category C every morphism admits at least one
irreducible factorization. This naturally leads to the notion of free categories,
which we now introduce.

Definition 2.7. A small category C is said to be free if every morphism in C
admits a unique irreducible factorization.

All the free categories that will be considered in the following turn out to be
finite. A degree function on a small category C is a map of sets d : Ob(C)→ N.

Remark 2.8. There exists a more general notion of degree functions, see [14].
Nevertheless we decided to present it as simply as possible, since it is not going to
play a crucial role in what follows.

Definition 2.9. A free direct Reedy category (R, d) consists of a free category
R endowed with a degree function d : Ob(R) → N such that every non-identity
morphism increases the degree, i.e. for every non-identity morphism r1 → r2 in R
we have d(r1) < d(r2). Dually, a free inverse Reedy category (R, d) consists of a
free category R endowed with a degree function d : Ob(R) → N such that every
non-identity morphism decreases the degree.

These are very special classes of Reedy categories, hence we decided to preserve
the name. For the general notion of Reedy categories we refer to [14]. We will
be interested just in finite free direct (or inverse) Reedy categories. Example 2.10
and Proposition 2.12 will explain how these categories are related to quivers. The
adjective free is due in fact to the correspondence with quivers.

Example 2.10. Let Q be a finite acyclic quiver. Then Q induces a finite free
direct Reedy category (Q, d) with the following definitions.

1. Ob(Q) = Q0, i.e. the objects of Q are the vertices of the quiver.

2. Mor(Q) = Paths(Q), i.e. the morphisms in the category Q is the set of
arrows Q1 plus all the possible compositions between them and the identity
morphisms.
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3. A degree function can be defined as follows. Since the quiver Q is finite and
acyclic, we have at least one vertex which is not the target of any arrow. We
shall call such a vertex a source vertex. Let us denote by {s1, . . . , sn} the set
of source vertices in Q. We then define d(si) = 0 for every i ≤ n. Now pick
a vertex j ∈ Q0, and consider the set

Pj : = {si → · · · → j | 1 ≤ i ≤ n}

of all paths starting from a source vertex and ending with the fixed vertex j.
Since the quiver Q is acyclic and finite, Pj is a finite (non-empty) set. Hence
there exists at least one path of maximal length (si → j1 → · · · → jm = j)
in Pj , for some i ≤ n. We define d(j) = m.

From now on, given a finite acyclic quiver Q we will denote by Q the associated
free direct Reedy category as explained in Example 2.10.

Remark 2.11. Let Q be a finite acyclic quiver. Thanks to Example 2.10 we can

associate to Q a finite free inverse Reedy category (
←
Q,
←
d ) as follows. The category

←
Q is the same category as Q, while the degree function is defined as

←
d :

←
Q→ N
j 7→M − d(j)

where d is the degree function defined in Example 2.10 and

M = max{d(j) | j ∈ Q0} ∈ N .

Proposition 2.12. Every finite free direct Reedy category is (except for the degree
function) of the form Q for some finite acyclic quiver Q. Dually, every finite free

inverse Reedy category is (except for the degree function) of the form
←
Q for some

finite acyclic quiver Q.

Proof. Given a finite free direct Reedy category R, it suffices to define a quiver
Q by taking Q0 as the set of objects in R, while the arrows in Q0 will be those
non-identity morphisms in R that do not admit any non-trivial factorization in
R. It is straightforward to check that R = Q.

Proposition 2.12 may seem not completely satisfactory, because the degree
functions do not necessarily match. The point is that any free direct Reedy cate-
gory can be endowed with many different degree functions. In fact, Example 2.10
describes just one of the possible degree functions on the free direct Reedy category
associated to a quiver.

Given a small category C and an object c ∈ C we can consider the category
C/c of arrows over c. Namely, the objects of C/c are morphisms of C whose
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target is c. A morphism between two objects s→ c and t→ c in C/c is simply a
commutative diagram of the form

s

��

// t

��
c

.

Dually, one defines the category c/C of arrows under c, where the objects are the
morphisms in C whose source is c.

Definition 2.13. Suppose R is a free direct Reedy category and let C be a
cocomplete category (i.e. a category C with all small colimits). Given a functor
F : R→ C and an object r ∈ R, we define the latching object at r to be

Lr(F ) = colim
↓r

F

where the colimit is taken over the full subcategory ↓r of R/r containing all the

objects except for the identity morphism r
idr−−→ r. Dually, suppose R is a free

inverse Reedy category and let C be a complete category (i.e. a category C with
all small limits). Given a functor F : R → C and an object r ∈ R, we define the
matching object at r to be

Mr(F ) = lim
↑r
F

where the limit is taken over the full subcategory ↑r of r/R containing all the

objects except for the identity morphism r
idr−−→ r.

We can now recall a powerful result that allows to “lift” model structures to
category of functors. Theorem 2.14 holds in a much more general setting. For the
strongest version we refer to [14]. We decided to present it in a weaker form in
order to make the relation with our context as clear as possible.

Theorem 2.14 ([14, Theorem 15.3.4]). Let R be a free direct Reedy category and
let M be a model category. Then the category of functors MR admits a model
structure where a natural transformation F → G is:

1. a Reedy weak equivalence if it is a pointwise weak equivalence in M, i.e. if
for every r ∈ R the morphism Fr → Gr is a weak equivalence in M,

2. a Reedy-projective fibration if it is a pointwise fibration in M, i.e. if for
every r ∈ R the morphism Fr → Gr is a fibration in M,

3. a Reedy-projective cofibration if for every r ∈ R the natural morphism in-
duced by the pushout

Lr(G)qLr(F ) Fr −→ Gr

is a cofibration in M.
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Dually, let R be a free inverse Reedy category and let M be a model category. Then
the category of functors MR admits a model structure where a natural transfor-
mation F → G is:

1. a Reedy weak equivalence if it is a pointwise weak equivalence in M, i.e. if
for every r ∈ R the morphism Fr → Gr is a weak equivalence in M,

2. a Reedy-injective cofibration if it is a pointwise cofibration in M, i.e. if for
every r ∈ R the morphism Fr → Gr is a cofibration in M,

3. a Reedy-injective fibration if for every r ∈ R the natural morphism induced
by the pullback

Fr −→ Mr(F )×Mr(G) Gr

is a fibration in M.

The model structures described in Theorem 2.14 are usually called the Reedy-
projective and the Reedy-injective model structures. We will often write RP -
fibration (respectively RP -cofibration) instead of Reedy-projective fibration (re-
spectively Reedy-projective cofibration). Similarly, we will refer to Reedy-injective
fibrations (respectively Reedy-injective cofibrations) writing RI-fibrations (respec-
tively RI-cofibrations).

Remark 2.15. The model structure described in Theorem 2.14 is cofibrantly
generated. In fact we restricted to the case where the Reedy category R is direct
(respectively inverse), so that the Reedy model structure and the projective (re-
spectively injective) model structure on functors coincide, see [14]. Anyway, this
is not going to play a crucial role in our contest.

Remark 2.16. It is important to notice that the Reedy model structures described
in Theorem 2.14 do not depend on the degree function of the finite free direct (or
inverse) Reedy category R. That is, given two different degree functions d and
d′ on R the classes of fibrations, cofibrations and weak equivalences furnished by
Theorem 2.14 do not change.

Our next goal is to describe the Reedy-projective cofibrant objects in the cat-
egory MR with respect to the Reedy-projective model structure and, dually, the
Reedy-injective fibrant objects in the category MR with respect to the Reedy-
injective model structure.

Lemma 2.17. Given a model category M and a finite free direct Reedy category
R, a diagram F ∈MR is RP -cofibrant if and only if for every r ∈ R the natural
morphism

Lr(F )→ Fr

is a cofibration in M. Dually, given a model category M and a finite free inverse
Reedy category R, a diagram F ∈MR is RI-fibrant if and only if for every r ∈ R
the natural morphism

Fr → Mr(F )

is a fibration in M.
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Proof. The statement immediately follows from Theorem 2.14.

Suppose R is a finite free direct Reedy category. For every r ∈ R consider the
category ↓r, see Definition 2.13. We now characterize the Reedy cofibrant objects
in terms of the irreducible objects of ↓r, that is the subset Irr(↓r) ⊆ Ob(↓r) of
arrows s → r which are irreducible morphisms in R. Proposition 2.12 allows to
give a “quiver-theoretic” description of irreducible objects in ↓r. Suppose R = Q
for some finite acyclic quiver Q (up to the degree function). Then for every r ∈ R
we have Irr(↓r) = {α ∈ Q1 | τ(α) = r}. Roughly speaking, Irr(↓r) is the set of
incoming arrows at r. Dually, one can consider the subset Irr(↑r) ⊆ Ob(↑r), which
essentially represents the subset of outgoing arrows. This observations together
with Theorem 2.18 will allow us to endow the category of quiver representations
with explicit model structures, see Theorem 2.20.

Theorem 2.18. Given a model category M and a finite free direct Reedy category
R, a diagram F ∈MR is RP -cofibrant if and only if for every r ∈ R the natural
morphism ⊕

(s→r)∈Irr(↓r)

Fs → Fr

is a cofibration in M, where the direct sum is taken over all the objects in ↓r that
are irreducible morphisms in R. Dually, given a model category M and a finite
free inverse Reedy category R, a diagram F ∈MR is RI-fibrant if and only if for
every r ∈ R the natural morphism

Fr →
∏

(s→r)∈Irr(↑r)

Fs

is a fibration in M, where the product is taken over all the objects in ↑r that are
irreducible morphisms in R.

Proof. By Lemma 2.17 it suffices to show that for every object F ∈MR and for
every r ∈ R there is an isomorphism Lr(F ) ∼=

⊕
(s→r)∈Irr(↓r)

Fs. Let us fix r ∈ R.

An object in the category ↓r is a path of the form (in → · · · → i0 → r). Clearly, in
↓r there exists a morphism from (in → · · · → i0 → r) to (i0 → r). Since R is a free
category, for every (s → r) ∈ Irr(↓r) we have a “connected component” Cs ⊆ ↓r
defined as the full subcategory of ↓r whose objects are the paths with an arrow to
(s → r). Moreover, (s → r) is the final object of Cs for every (s→ r) ∈ Irr(↓r).
Hence we have the following:

Lr F = colim
↓r

F ∼= colim
(s→r)∈Irr(↓r)

(
colim

(i→r)∈Cs
Fi

)
= colim

(s→r)∈Irr(↓r)
Fs =

⊕
(s→r)∈Irr(↓r)

Fs.

The second part of the statement is dual.
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Remark 2.19. To understand the usefulness of Theorem 2.14 and Theorem 2.18
in the contest of quiver representations it is sufficient to observe the following: rep-
resentations of a finite acyclic quiver Q over a quasi-Frobenius ring R are precisely
functors Q→Mod(R) where Q is the free direct Reedy category of Example 2.10,
i.e. Rep(Q, R) ∼= Mod(R)Q. In fact, a functor M : Q → Mod(R) is the data
of a module Mj ∈ Mod(R) for every j ∈ Q0, together with a R-linear map
Mσ(α) →Mτ(α) for every α ∈ Q1.

Theorem 2.20 (Model structures on quiver representations). Let Q be a finite
acyclic quiver, and let R be a quasi-Frobenius ring. Then the category Rep(Q, R)
admits two model structures.

In the Reedy projective model structure a morphism between R-representations
M → N is:

1. a weak equivalence (called Reedy stable equivalence) if it is a pointwise stable
equivalence in Mod(R), i.e. if for every vertex j ∈ Q0 the morphism Mj →
Nj is a stable equivalence of R-modules,

2. a fibration (called RP -fibration) if it is a pointwise surjection in Mod(R),
i.e. if for every vertex j ∈ Q0 the morphism Mj → Nj is surjective,

3. a cofibration (called RP -cofibration) if for every vertex j ∈ Q0 the natural
morphism induced by the coproduct ⊕

α∈Q1
τ(α)=j

Nσ(α)

q ⊕
α∈Q1
τ(α)=j

Mσ(α)


Mj −→ Nj

is injective.

Moreover, every R-representation is RP -fibrant while an R-representation M is
RP -cofibrant if and only if for every vertex j ∈ Q0 the natural morphism of R-
modules ⊕

α∈Q1
τ(α)=j

Mσ(α) →Mj

is injective.
In the Reedy injective model structure a morphism between R-representations

M → N is:

1. a weak equivalence (called, again, Reedy stable equivalence) if it is a pointwise
stable equivalence in Mod(R), i.e. if for every vertex j ∈ Q0 the morphism
Mj → Nj is a stable equivalence of R-modules,

2. a cofibration (called RI-cofibration) if it is a pointwise injection in Mod(R),
i.e. if for every vertex j ∈ Q0 the morphism Mj → Nj is injective,
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3. a fibration (called RI-fibration) if for every vertex j ∈ Q0 the natural mor-
phism induced by the product

Mj −→

 ∏
α∈Q1
σ(α)=j

Mτ(α)

× ∏
α∈Q1
σ(α)=j

Nτ(α)


Nj

is surjective.

Moreover, every R-representation is RI-cofibrant, while an R-representation M
is RI-fibrant if and only if for every vertex j ∈ Q0 the natural morphism of R-
modules

Nj →
∏
α∈Q1
σ(α)=j

Mτ(α)

is surjective.

Proof. Since there exists an isomorphism of categories Rep(Q, R) ∼= Mod(R)Q,
the statement immediately follows from Theorem 2.14 and Theorem 2.18.

Morphisms of Rep(Q, R) that are both Reedy stable equivalences and RP -
fibrations (respectively RP -cofibrations) will be called RP -stable fibrations (re-
spectively RP -stable cofibrations). Morphisms of Rep(Q, R) that are both Reedy
stable equivalences and RI-fibrations (respectively RI-cofibrations) will be called
RI-stable fibrations (respectively RI-stable cofibrations).

Remark 2.21. In the introduction we mentioned that our arguments work in a
more general setting. More precisely one may assume R to be a possibly non-
commutative Gorenstein ring, see Definition 4.1. In particular, Theorem 2.20
would give a different characterization of RP -cofibrant R-representations, namely
the natural morphism ⊕

α∈Q1
τ(α)=j

Mσ(α) →Mj

is required to be a cofibration in Mod(R), i.e. injective with Gorenstein-projective
cokernel. Clearly, if R is quasi-Frobenius the second condition is automatically
satisfied. We point out that even in the general case of a non-commutative Goren-
stein ring R, given an RP -cofibrant R-representation M ∈ Rep(Q, R) then Mj is
Gorenstein-projective in Mod(R) for every j ∈ Q0. In fact one can easily show
that any RP -cofibration is in particular a vertexwise cofibration in Mod(R). As
a consequence we have that the “monic representations satisfying condition (G)”
introduced in [22] are nothing but RP -cofibrant representations of Theorem 2.20.

Remark 2.22. In [22] the approach via monic representations works only in the
“finite” case, i.e. the authors restrict their study to finitely generated modules.
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On the other hand, a more recent paper by Luo and Zhang extends their results to
quivers with relations, see [23]. Since model categories are not used very often in
quiver representation theory, we decided to reduce technical issues at minimum.
This motivates our choice to avoid the study of quivers with relations. Never-
theless, our approach via model categories works for possibly infinitely generated
modules. However, the strategy of the present paper should give an explicit char-
acterization of Gorenstein-projective modules even in the general case of infinitely
generated Gorenstein-projective modules over the (opposite) path algebra of quiv-
ers with relations.

We point out that recently, Hu, Luo, Xiong and Zhou studied Gorenstein-
projective modules in the non-finite case via filtration categories, see [18]. More-
over, two papers by Enochs, Estrada, Garćıa Rozas, [9], and by Eshraghi, Hafezi,
Salarian, [10], completely solved the problem providing a description of Gorenstein-
projective modules in a very general setting, so that the main innovation of the
present paper relies in the homotopic approach which is far from the ones explored
up to now.

3. Stable equivalences and Reedy stable equivalences

In order to better understand the notion of Reedy stable equivalences of Theo-
rem 2.20 we now look for a description as simple as possible for the class of stable
equivalences in Mod(R), when R is a quasi-Frobenius ring. This is already known;
for the reader convenience we provide elementary proofs, see Corollary 3.2.

Proposition 3.1. Let R be a quasi-Frobenius ring. A morphism f : M → N in
Mod(R) is a stable fibration if and only if there exists an injective/projective R-

module P such that f is the composition M
∼=−→ N ⊕ P → N , where N ⊕ P → N

is the natural projection and M
∼=−→ N ⊕ P is an isomorphism of R-modules.

Dually, a morphism f : M → N in Mod(R) is a stable cofibration if and only
if there exists an injective/projective R-module J such that f is the composition

M ↪→M ⊕ J
∼=−→ N , where M ↪→M ⊕ J is the natural inclusion and M ⊕ J

∼=−→ N
is an isomorphism of R-modules.

Proof. Suppose f : M → N in Mod(R) is a stable fibration. By Theorem 2.4 it
is surjective and hence f fits into a short exact sequence

0→ ker(f)
ι−→M

f−→ N → 0

in Mod(R). Now, N is cofibrant and then the diagram of solid arrows

M

∼ f
����

N
idN

//

h

>>

N
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admits a lifting h : N →M . This means that the above short exact sequence splits,

i.e. f is the composition M
∼=−→ ker(f)⊕N → N . It remains to show that ker(f) is

injective/projective. Notice that the splitting gives a morphism M
r−→ ker(f) such

that r ◦ ι = idker(f). Also, being f a stable equivalence, ker(f)
ι−→ M is zero in

Mod(R), that is ι factors through a projective R-module in Mod(R). Now, the
relation r ◦ ι = idker(f) implies that idker(f) factors through a projective object in
Mod(R), and then ker(f) is a projective R-module as required. The proof of the
second part of the statement is dual.

Corollary 3.2. Let R be a quasi-Frobenius ring. Every stable equivalence M
f−→ N

in Mod(R) is of the form M →M⊕P ∼= N⊕Q→ N for some injective/projective
R-modules P and Q, where M →M ⊕P is the natural inclusion and N ⊕Q→ N
is the natural projection.

Proof. Consider a stable equivalence M
f−→ N in Mod(R). Now, take a factor-

ization as a cofibration followed by a stable fibration f : M
α−→ A

β−→ N . By the
two-out-of-three axiom α is a stable cofibration, then Proposition 3.1 concludes
the proof.

The next step is to investigate RP -stable fibrations and RI-stable cofibrations
in the category Rep(Q, R).

Proposition 3.3. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius
ring. A morphism f : M → N in Rep(Q, R) is a RP -stable fibration with respect
to the model structure of Theorem 2.20 if and only if for every vertex j ∈ Q0 the
morphism fj : Mj → Nj is a stable fibration in Mod(R).

Dually, a morphism f : M → N in Rep(Q, R) is a RI-stable cofibration with
respect to the model structure of Theorem 2.20 if and only if for every vertex j ∈ Q0

the morphism fj : Mj → Nj is a stable cofibration in Mod(R).

Proof. The statement is a corollary of Theorem 2.20 and Proposition 3.1.

Proposition 3.3 may seem not completely satisfactory because the factoriza-
tion is only degreewise in the category Mod(R) and not global in the cate-
gory Rep(Q, R). Namely one could naturally define RP -elementary stable fi-

brations in Rep(Q, R) as the compositions M
∼=−→ N ⊕ P πN−−→ N for some pro-

jective R-representation P ∈ Rep(Q,R), and may expect that RP -stable fibra-
tions coincides with RP -elementary stable fibrations generalizing Proposition 3.1.
(Un)fortunately this turns out to be false, and we will see in Section 4 how this
asymmetry naturally gives rise to the notion of Gorenstein-projective modules. In
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fact, every diagram of solid arrows of the following shape

M

∼=
��

N ⊕ P

πN

��
C //

h

EE

N

admits a lifting h even in the category Rep(Q, R). This means that if RP -
elementary stable fibrations were precisely the RP -stable fibrations, then every
R-representation would be RP -cofibrant but this is clearly false by Theorem 2.20,
unless the quiver has no arrows.

Our next result characterizes projective and injective R-representations in
terms of the Reedy model structures of Theorem 2.20.

Lemma 3.4. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius ring.
Then the following are equivalent for an R-representation M .

1 M is a projective object in Rep(Q, R).

2 M is RP -cofibrant and Mj is a projective R module for every j ∈ Q0.

Dually, the following are equivalent.

1 M is an injective object in Rep(Q, R).

2 M is RI-fibrant and Mj is an injective R module for every j ∈ Q0.

Proof. Suppose M is a projective R-representation. Then it is clearly cofibrant
since it satisfies the left lifting property with respect to every surjective morphisms
and then, in particular, with respect to every RP -stable fibration. It remains to
show that Mj is projective in Mod(R) for every j ∈ Q0. To this aim, we fix
i ∈ Q0 and given a diagram of solid arrows of shape

A

p
����

Mi
//

h

>>

B

in the category Mod(R) we construct a (dotted) lifting h : Mi → A. We begin
by defining two new R-representations A(i), B(i) ∈ Rep(Q, R) through a general
procedure. For any C ∈Mod(R), define

C(i)j =
∏

paths j→i

C
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and for any arrow α : j → j′ let the corresponding morphism C(i)α : C(i)j →
C(i)j′ be the canonical projection, defined mapping (via the identity) the compo-

nent C corresponding to a path j
α−→ j′ → i to the component C corresponding

to the path j′ → i, and being 0 on any component corresponding to a path j → i
which does not factorize through α. In particular, A(i)i = A. The above procedure
defines an exact functor

(i) : Mod(R)→ Rep(Q, R), C 7→ C(i)

so that the epimorphism of R-modules p : A→ B induces an obvious epimorphism
of R-representations p(i) : A(i) → B(i). Moreover, this functor is right adjoint
to the projection functor M 7→ Mi. Hence the map Mi → B naturally induces a
morphism M → B(i) which by hypothesis can be lifted to a morphism h̃ : M →
A(i) such that the following diagram

A(i)

p(i)

��
M //

h̃

==

B(i)

commutes in the category Rep(Q, R). Again by adjunction, it is now sufficient to
define h = h̃i : Mi → A to complete the proof.

Viceversa, given a diagram of solid arrows of shape

X

p
����

M
g
//

f
>>

Y

in the category Rep(Q, R), we can recursively construct the (dotted) lifting f
using the injectivity of the natural morphisms

m̄i :
⊕
α∈Q1
τ(α)=i

Mσ(α) →Mi

for every i ∈ Q0, and the degreewise projectivity of M . Let us be more precise.
First, if i ∈ Q0 is a source vertex (i.e. it does not exist any arrow whose target
is i), then we can define fi : Mi → Xi to be any map of R-modules satisfying
gi = pifi, which exists by the projectivity of Mi. Now, suppose i ∈ Q0 is any
vertex and assume we have already defined fj : Mj → Xj for every j ∈ Q0 such
that there exists a path j → j1 → · · · → jk → i. The universal property of the
direct sum gives a map

f̄ :
⊕
α∈Q1
τ(α)=i

Mσ(α)

⊕fσ(α)−−−−−→ Xi
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satisfying the following commutativity

Mj

fj //

ϕi

��

Xj

xji

��⊕
α∈Q1
τ(α)=i

Mσ(α)
f̄ //

m̄i��

Xi

pi

��
Mi

gi // Yi

(3.1)

for every arrow j → i, where ϕi is the natural inclusion. Now observe that the
map m̄i is injective being M an RP -cofibrant R-representation by hypothesis, and
pi is surjective. Moreover, the R-module

⊕
α∈Q1
τ(α)=i

Mσ(α) is projective (hence injective

being R a quasi-Frobenius ring) so that the short exact sequence

0→
⊕
α∈Q1
τ(α)=i

Mσ(α)
m̄i−−→Mi → coker(m̄i)→ 0

splits, and coker(m̄i) is a projective R-module being isomorphic to a direct sum-
mand of Mi. It follows by Proposition 3.1 that the map m̄i is a stable cofibration
in Mod(R), so that the bottom square in (3.1) admits a lifting fi : Mi → Xi as
required. Hence M is projective in Rep(Q, R). The second part of the statement
is dual.

We now give another description of RP -stable fibrations and RI-stable cofi-
brations.

Proposition 3.5. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius
ring. A morphism f : M → N in Rep(Q, R) is a RP -stable fibration if and only
if it is surjective and projdimRep(Q,R) (ker{f}) ≤ 1.

Dually, a morphism f : M → N in Rep(Q, R) is a RI-stable cofibration if and
only if it is injective and injdimRep(Q,R) (coker{f}) ≤ 1.

Proof. Let f : M → N in Rep(Q, R) be a RP -stable fibration. In order to show
that

projdimRep(Q,R) (ker{f}) ≤ 1

we construct an explicit projective resolution of ker{f} in the category Rep(Q, R).
To begin with, for every j ∈ Q0 consider the category ↓j of paths ending at j, the
notation is the same as in Definition 2.13. Recall that by definition the identity

path j
id−→ j does not belong to ↓j, so that it may be empty. We denote by ↓j

the “closure” of ↓j, namely ↓j = ↓j ∪ {j id−→ j}. In order to keep the exposition
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as clear as possible, we shall denote by σ(β) ∈ Q0 the starting vertex for a path

β ∈ ↓j; of course τ(β) = j for every β ∈ ↓j. We now define an R-representation
T ∈ Rep(Q, R) as follows. For every vertex j ∈ Q0 we set Tj =

⊕
β∈↓j

ker{fσ(β)}.

Clearly, ↓σ(α) is a subcategory of ↓τ(α) for every arrow α ∈ Q1, then there exists
a natural inclusion

ι :
⊕

β∈↓σ(α)

ker{fσ(β)} →
⊕

β∈↓τ(α)

ker{fσ(β)}

so that we can define
tα = mα + ι : Tσ(α) → Tτ(α)

where mα : ker{fσ(α)} → ker{fτ(α)} is the restriction of mα : Mσ(α) → Mτ(α) to
the submodule ker{fσ(α)} ⊆ Mσ(α). Since for every j ∈ Q0 the multiplicity of
ker{fj} in Tj is precisely 1, there exists an obvious projection π : T → ker{f} in
the category Rep(Q, R). Moreover, there is a short exact sequence in the category
Rep(Q, R)

0→ K → T
π−→ ker{f} → 0

where for every vertex j ∈ Q0 we define Kj =
⊕
β∈↓j

ker{fσ(β)}, and for every

α ∈ Q1 the morphism kα : Kσ(α) → Kτ(α) is the natural inclusion induced by
↓σ(α) ⊆ ↓τ(α). It now suffices to show that K and T are projective objects
in the category Rep(Q, R). By Proposition 3.3, for every vertex j ∈ Q0 the
morphism fj : Mj → Nj is an elementary stable equivalence in Mod(R), i.e. fj

is the composition fj : Mj

∼=−→ Nj ⊕ Pj → Nj for some projective R-modules
Pj ∈Mod(R). It follows that ker{fj} ∼= Pj in Mod(R) for every j ∈ Q0, so that
Kj and Tj are projective R-modules. Then, the statement follows by Lemma 3.4
using the injectivity of the natural morphisms⊕

α∈Q1
τ(α)=j

Kσ(α) → Kj

⊕
α∈Q1
τ(α)=j

Tσ(α) → Tj

for every j ∈ Q0.
For the converse, let f : M → N be a surjective morphism in Rep(Q, R) such

that ker{f} satisfies projdimRep(Q,R)(ker{f}) ≤ 1. Then there exists a short exact
sequence

0→ K → T → ker{f} → 0

with K and T projective objects in Rep(Q, R). Since for every j ∈ Q0 the R-
module Kj is (projective and) injective, the sequence

0→ Kj → Tj → ker{fj} → 0

splits in Mod(R). It follows that ker{fj} is isomorphic to a direct summand of
Tj , and then it is a projective R-module. Now, for every j ∈ Q0 we consider the
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short exact sequence

0→ ker{fj} →Mj
fj−→ Nj → 0.

Since R is quasi-Frobenius, ker{fj} is an injective R-module so that the sequence
above splits in Mod(R). Hence by Proposition 3.1 fj is a stable fibration as
required. The second part of the statement is dual.

The last result of this section is an easy consequence of Proposition 3.5.

Corollary 3.6. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius
ring. For every R-representation M ∈ Rep(Q, R) there exists an exact sequence

0→ S → T → GPM →M → 0

where S and T are projective objects in Rep(Q, R) and GPM is RP -cofibrant.
Dually, there exists an exact sequence

0→M → GIM → I → J → 0

where I and J are injective objects in Rep(Q, R) and GIM is a RI-fibrant R-
representation.

Proof. Take a factorization of the morphism 0→M as a RP -cofibration followed
by a RP -stable fibration: 0 → GPM

ε−→ M . By Proposition 3.5 the kernel K =
ker{ε} has projective dimension at most 1, so that in Rep(Q, R) there exists an
exact sequence

0→ S → T
f−→ K → 0

with S and T projective. Now

0→ S → T
ι◦f−−→ GPM

ε−→M → 0

is the required exact sequence, where ι : K → GPM is the natural inclusion. The
second part of the statement is dual.

4. Relation with Gorenstein Homological Algebra

Throughout this section we will consider a finite acyclic quiver Q, and the path
algebra Λ of Q over a quasi-Frobenius ring R. Recall that Λ is generated as an R-
module by all paths in Q of length greater than or equal to zero, so that Λ includes
the so-called lazy paths, one for each vertex of the quiver. The multiplication in
Λ is given by composition of paths, and if two paths cannot be concatenated,
then by definition their product in Λ is 0. Notice that this defines an associative
algebra over R. This algebra has a unit element since the quivers we are interested
in are assumed to have only finitely many vertices. Historically, composition of
paths is written from the left to the right. To avoid confusion, we shall write
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Λop instead of Λ when dealing with the opposite product convention. Following
this notation, modules over Λop are naturally identified with representations of Q.
Moreover, under our assumptions on the quiver, if R = K is a field then Λ is a
finite-dimensional hereditary algebra over R, see [25]. In Lemma 4.5 we prove that
Λ is in fact 1-Gorenstein for every quasi-Frobenius ring R.

Many interesting examples of such algebras arise when R is a finite dimensional

self-injective C-algebra such as R = C[t]
(tn) , in this case we have Λ = CQ⊗CR where

CQ is the usual path algebra of Q over C.
We begin by recalling the notions of n-Gorenstein rings, Gorenstein-projective

modules and Gorenstein-injective modules.

Definition 4.1. Given n ∈ N, a Noetherian ring G is called n-Gorenstein if

injdimMod(G)G ≤ n and injdimMod(Gop)G ≤ n.

That is, G has injective dimension at most n both as a left and right module over
itself. G is called Gorenstein if it is n-Gorenstein for some n ∈ N.

Gorenstein rings were introduced by Iwanaga in [20] and [21], generalizing the
standard notion of commutative Gorenstein rings. Examples of Gorenstein rings
are quasi-Frobenius rings and group rings K[G] for any commutative Gorenstein
ring K and any finite group G, see [6].

Definition 4.2. LetR be a ring. AnR-moduleM ∈Mod(R) is called Gorenstein-
projective if there exists an exact sequence of projective modules

· · · → P−1 d−1

−−→ P 0 d0

−→ P 1 → · · ·

that remains exact under the functor Hom(−, P ) for every projective module P ∈
Mod(R), and such that M ∼= ker{d0}.

Dually, M ∈ Mod(R) is called Gorenstein-injective if there exists an exact
sequence of injective modules

· · · → J−1 d−1

−−→ J0 d0

−→ J1 → · · ·

that remains exact under the functor Hom(J,−) for every injective module J ∈
Mod(R), and such that M ∼= ker{d0}.

We shall denote by GProj(Λ) the full subcategory of Mod(Λ) whose objects
are the Gorenstein-projective modules and, similarly, by GInj(Λ) the full sub-
category of Mod(Λ) whose objects are the Gorenstein-injective modules. The
main results concerning Gorenstein-projective modules are described by Enochs
and Jenda, and can be found in [8]. Over a Gorenstein ring, finitely generated
Gorenstein-projective modules are also called maximal Cohen-Macaulay modules.
The relation between finitely generated Gorenstein-projective modules and quiver
representations over a finite dimensional self-injective algebra is investigated by



Quiver representations and Gorenstein-projective modules 23

Luo and Zhang in [22]. We will extend one of their results to the whole class of
Gorenstein-projective modules, see Corollary 4.7.

In [17], Hovey introduced two model structures on the category Mod(G) for
any Gorenstein ring G, and he studied the main properties of the associated ho-
motopy category Ho(Mod(G)) with respect to this model structures. We will
call these model structures Hovey-projective (or simply HP ) and Hovey-injective
(or HI) structures. Our next goal is to induce a model structure on the cate-
gory Mod(Λ) through the equivalence of categories Rep(Q, R) ' Mod(Λ), and
to compare it with Hovey’s model structures. To this aim we need to show that
given a finite acyclic quiver Q and a quasi-Frobenius ring R, the path algebra
Λ = RQ is a Gorenstein ring, see Lemma 4.5. We begin by recalling Hovey’s
result.

Theorem 4.3 (Hovey, [17]). Suppose G is a Gorenstein ring. Then there are two
model structures on the category of G-modules where the class of trivial objects is
the class of modules of finite projective dimension. In the Hovey-projective model
structure

1. HP-fibrations coincide with surjective morphisms,

2. trivial HP-fibrations are surjective morphisms whose kernels have finite pro-
jective dimension,

3. HP-cofibrant objects are the Gorenstein-projective modules,

4. modules that are both HP-cofibrant and trivial are projective.

In the Hovey-injective model structure

1. HI-cofibrations coincide with injective morphisms,

2. trivial HI-cofibrations are injective morphisms whose cokernels have finite
injective dimension,

3. HI-fibrant objects are the Gorenstein-injective modules.

4. modules that are both HI-fibrant and trivial are injective.

Now we state the existence of two model structures on Mod(Λop), which we
call again Reedy-projective and Reedy-injective model structures since they are
induced by Theorem 2.20.

Theorem 4.4. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius ring.
Consider the path algebra Λ = RQ. Also, for every vertex j ∈ Q0 let us denote by
ej ∈ Λ the correspondent lazy path. Then the category Mod(Λop) of Λop-modules
admits two model structures. In the Reedy-projective model structure:

1. a morphism of Λop-modules M → N is a weak equivalence (called Reedy sta-
ble equivalence) if and only if for every vertex j ∈ Q0 the induced morphism
ej(M)→ ej(N) is a stable equivalence of R-modules,
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2. a morphism of Λop-modules is a RP -fibration if and only if it is surjective,

3. a morphism of Λop-modules M → N is a RP -cofibration if for every vertex
j ∈ Q0 the natural morphism induced by the pushout ⊕

α∈Q1
τ(α)=j

eσ(α)(N)

q ⊕
α∈Q1
τ(α)=j

eσ(α)(M)


ej(M) −→ ej(N)

is injective.

4. a Λop-module M ∈ Mod(Λop) is RP -cofibrant if and only if the natural
morphism ⊕

α∈Q1
τ(α)=j

eσ(α)(M)→ ej(M)

is injective for every j ∈ Q0.

Dually, in the Reedy-injective model structure:

1. a morphism of Λop-modules M → N is a weak equivalence (called Reedy sta-
ble equivalence) if and only if for every vertex j ∈ Q0 the induced morphism
ej(M)→ ej(N) is a stable equivalence of R-modules,

2. a morphism of Λop-modules is a RP -cofibration if and only if it is injective,

3. a morphism of Λop-modules M → N is a RP -fibration if for every vertex
j ∈ Q0 the natural morphism induced by the pullback

ej(M) −→

 ∏
α∈Q1
τ(α)=j

eτ(α)(M)

× ∏
α∈Q1
σ(α)=j

eτ(α)(N)


ej(N)

is injective.

4. a Λop-module M ∈ Mod(Λop) is RI-fibrant if and only if the natural mor-
phism

ej(M)→
∏
α∈Q1
σ(α)=j

eτ(α)(M)

is surjective for every j ∈ Q0.

Proof. The statement is essentially the same as the one of Theorem 2.20. First of
all recall that there exists an equivalence of categories Mod(Λop) ' Rep(Q, A),
which assigns to every Λop-module M the R-representation whose R-module over a
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vertex j ∈ Q0 is ej(M), while for every α ∈ Q1 the R-linear morphism eσ(α)(M)→
eτ(α)(M) is given by the action of α ∈ Λop. Now observe that by Theorem 2.20
the RP -cofibrant representations are charachterized by the property that for every
vertex j ∈ Q0 the natural morphism of R-modules⊕

α∈Q1
τ(α)=j

eσ(α)(M)→ ej(M)

is injective. To conclude it is sufficient to notice that a morphism M → N of Λop-
modules is surjective if and only if for every vertex j ∈ Q0 the induced morphism
of R-modules ej(M) → ej(N) is surjective. The second part of the statement is
dual.

Lemma 4.5. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius ring.
Then the (opposite) path algebra Λop = RQop is 1-Gorenstein.

Proof. First, we show that Λop has injective-dimension less than 2 as a left module
over itself, i.e. the inequality injdimMod(Λop) Λop ≤ 1 holds. To begin with we
notice that the finite set {ej}j∈Q0

of lazy paths in Λop is a collection of primitive
orthogonal idempotents such that

1 =
∑
j∈Q0

ej

in Λop. It follows that the path algebra Λop itself is isomorphic to the direct sum
of a finite number of indecomposable projective Λop-modules⊕

j∈Q0

ejΛ
op

as a module over Λop. Therefore, through the equivalence Mod(Λop) ' Rep(Q, R),
Λop corresponds to a representation A ∈ Rep(Q, R) given by the direct sum of
some indecomposable projective representations. In particular, Aj is a projec-

tive R-module for every vertex j ∈ Q0. Now, consider the morphism 0
α−→ A in

Rep(Q, R). Clearly, α is vertexwise a stable cofibration of R-modules, and then it
is a RI-stable cofibration by Proposition 3.3. Hence, by Proposition 3.5 we have

injdimMod(Λop) Λop = injdimRep(Q,R) (A) = injdimRep(Q,R) (cokerα) ≤ 1

as required. To prove the inequality injdimMod(Λ) Λ ≤ 1 it is sufficient to consider
the opposite quiver Qop, and to repeat the above discussion.

Theorem 4.6. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius ring.
Consider the path algebra Λ = RQ. Then the Hovey-projective model structure
of Theorem 4.3 and the Reedy-projective model structure of Theorem 4.4 coincide.
Dually, the Hovey-injective model structure of Theorem 4.3 and the Reedy-injective
model structure of Theorem 4.4 coincide.
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Proof. It suffices to observe that the class of fibrations and trivial fibrations of
the two model structures coincide. In both structures fibrations are surjective
morphisms. Since by Lemma 4.5 Λop is 1-Gorenstein, it follows that every Λop-
module of finite projective dimension has projective dimension at most 1 (see
e.g. [8, Proposition 10.1.15]). Hence by Proposition 3.5 the trivial fibrations of
Theorem 4.4 are surjective morphisms with kernel of finite projective dimension.
The second part of the statement is dual.

As an immediate consequence of Theorem 4.6 we obtain a characterization of
Gorenstein-projective and Gorenstein-injective Λop-modules.

Corollary 4.7. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius
ring. Consider the path algebra Λ = RQ. A module M ∈Mod(Λop) is Gorenstein-
projective if and only if the corresponding R-representation is RP -cofibrant in
Rep(Q, R). Dually, a module M ∈Mod(Λop) is Gorenstein-injective if and only
if the corresponding R-representation is RI-fibrant in Rep(Q, R).

Proof. It follows by Theorem 2.20, Theorem 4.3, and Theorem 4.6.

This result agrees with the one obtained by Luo and Zhang in [22] since (when
R is a finite dimensional self-injective algebra) their definition of monic representa-
tion precisely coincide with our notion of RP -cofibrant representation. Also, one
can then characterize R-representations corresponding to Gorenstein-projective
(Gorenstein-injective) Λop-modules in terms of a lifting property in the category
Rep(Q, R).

Corollary 4.8. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius
ring. Consider the path algebra Λ = RQ of Q over R, and a representation
M ∈ Rep(Q, R). Then M corresponds to a Gorenstein-projective Λop-module if
and only if for every RP -stable fibration p : X → Y in Rep(Q, R) every morphism
q : M → Y admits a lifting h : M → Y , i.e. the following diagram commutes

X

p ∼
����

M
q
//

h

>>

Y

in the category Rep(Q, R). Dually, M corresponds to a Gorenstein-injective Λop-
module if and only if for every RI-stable cofibration ι : X → Y in Rep(Q, R)
every morphism q : X →M admits a lifting h : Y →M , i.e. the following diagram
commutes

X

ι ∼
��

q // M

Y

h

>>

in the category Rep(Q, R).
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Proof. The statement is an immediate consequence of Corollary 4.7.

Example 4.9. Let Q be the quiver 0 → 1, and let R = C[ε] be the algebra of
dual numbers over C, i.e. R = C[t]/(t2) where t is a central variable. Since C[ε]
is self-injective we have a model structure on the category Rep(Q,C[ε]) of repre-
sentations of Q over the algebra C[ε]. We now turn our attention to the cofibrant
objects. Thanks to Theorem 2.20, a C[ε]-representation M ∈ Rep(Q,C[ε]) is RP -
cofibrant if and only if the morphism of C[ε]-modules m01 : M0 →M1 is injective.
By Corollary 4.7 we have

Rep(Q,C[ε])RPcof ' GProj(CQop ⊗C C[ε]).

Dually, again by Theorem 2.20, a C[ε]-representation M ∈ Rep(Q,C[ε]) is RI-
fibrant if and only if the morphism of C[ε]-modules m01 : M0 → M1 is surjective.
By Corollary 4.7 we have

Rep(Q,C[ε])RIfib ' GInj(CQop ⊗C C[ε]).

Thanks to Corollary 4.7 one can also explicitly characterize Reedy stable equiv-
alences in Rep(Q, R). This in fact will be useful in Section 5.

Proposition 4.10. Let Q be a finite acyclic quiver, and let R be a quasi-Frobenius
ring. A morphism f : M → N in Rep(Q, R) is a Reedy stable equivalence if and
only if there exists a commutative diagram

GPM
ι //

��

GPM ⊕ T
∼= // GPN ⊕ S

π // GPN

��
M

f // N

for some projective representations S, T ∈ Rep(Q, R), where GPM → M and
GPN → N are RP -cofibrant replacements for M and N respectively, ι is the
natural inclusion and π is the natural projection.

Dually, a morphism f : M → N in Rep(Q, R) is a Reedy stable equivalence if
and only if there exists a commutative diagram

M
f //

��

N

��
GIM

ι // GIM ⊕ J
∼= // GIN ⊕K

π // GIN

for some injective representations J,K ∈ Rep(Q, R), where M → GIM and
N → GIN are RI-fibrant replacements for M and N respectively, ι is the natural
inclusion and π is the natural projection.
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Proof. Consider a Reedy stable equivalence f : M → N in Rep(Q, R). Applying
the RP -cofibrant replacement functor we obtain a commutative square

GPM
GP f //

��

GPN

��
M

f // N.

Now take a factorization of GP f as a RP -stable cofibration followed by a RP -
fibration:

GP f : GPM
α−→ D

β−→ GPN.

By the two-out-of-three axiom β is a RP -stable fibration. Now, α fits into an
exact sequence 0 → GPM

α−→ D → coker(α) → 0, and this sequence splits since
GPM is RP -fibrant. Then, it is easy to see that the left lifting property of α with
respect toRP -fibrations is equivalent to the projectivity of coker(α) in the category
Rep(Q, R). Also, since GPN is RP -cofibrant β splits too. This gives a morphism

D
r−→ ker(β) such that the composition ker(β) ↪→ D

r−→ ker(β) is the identity
morphism on ker(β), so that ker(β) is a retract of D and hence RP -cofibrant.
Being also a trivial object in Rep(Q, R), ker(β) is projective by Theorem 4.3.
The statement follows by taking T = coker(α) and S = ker(β). The second part
of the statement is dual.

5. The stable category of quiver representations

The aim of this section is to investigate the main properties of the homotopy cate-
gory of Rep(Q, R). As we will see, it satisfies three different universal properties.
In particular it is an algebraic category, meaning that it is triangle equivalent to the
stable category of a Frobenius category, namely to GProj(Λop) and GInj(Λop).
We begin by recalling definitions and notations.

A Frobenius category is a Quillen exact category which has enough injectives
and enough projectives, and where the class of projectives coincides with the class
of injectives. For instance, given a quasi-Frobenius ring, the category Mod(R) is
a Frobenius category where the Quillen exact structure is given by the short exact
sequences. Another interesting example is given by the following result, which
actually holds in a more general setting; for details and relations with Geometry
we refer to [19].

Proposition 5.1. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius
ring. Consider the path algebra Λ = RQ. Then the full subcategory GProj(Λop) ⊆
Mod(Λop) of Gorenstein-projective Λop-modules is a Frobenius category. Dually,
the full subcategory GInj(Λop) ⊆ Mod(Λop) of Gorenstein-injective Λop-modules
is a Frobenius category.

It is well-known that the stable category of a Frobenius category is triangu-
lated, see [15]. Given a Frobenius category F, its stable category F is defined
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as follows. The objects are the same as F, while given A,B ∈ F one defines

HomF(A,B) = HomF(A,B)
JA,B

, where JA,B is the ideal generated by all those mor-

phisms A → B which factor through an injective/projective object in F. There
exists an obvious functor γ : F → F that is the identity on objects. In fact,
the pair (F, γ) is initial in the category of categories under F annihilating injec-
tive/projective objects. In other terms, F satisfies the following universal property:
for every functor α : F → C such that α(P ) ∼= α(0F) for every projective P ∈ F,
there exists a functor α̃ : F→ C such that α = α̃ ◦ γ.

The shift functor T : F → F is defined as follows. Take an object A ∈ F
and consider a conflation A → IA → TA where IA is an injective object in F.
Our interest will be only in categories where conflations are precisely short exact
sequences. Then, T (A) = TA is well-defined in F by the Schanuel’s Lemma (for
details we refer again to [15]).

Now recall that in the homotopy category of any (pointed) model category
M the suspension functor Σ and the loop functor Ω are defined. More precisely,
given an object A ∈ M, we first take the cofibrant replacement CA → A, then
we factor the morphism CA → 0 as a cofibration followed by a trivial fibration
CA

ι−→ DA → 0, so that we can define ΣA = coker(ι). Dually, given an object
A ∈M, we first take the fibrant replacement A→ FA, then factor the morphism
0→ FA as a trivial cofibration followed by a fibration 0→ EA

π−→ FA, and define
ΩA = ker(π). Notice that up to weak equivalences all the choices we made do not
really matter.

Now observe that the identity functor Rep(Q, R) → Rep(Q, R) is a Quillen
equivalence from the RP -model structure to the RI-model structure of Theo-
rem 2.20, so that the homotopy categories of these two model structures are
equivalent. In fact it is immediate to check that they are isomorphic. From
now on we denote by Ho(Rep(Q, R)) the homotopy category with respect to
both Reedy model structures of Theorem 2.20. Similarly, in the following we de-
note by Ho(Mod(G)) the homotopy category of modules over a Gorenstein ring
with respect to both Hovey model structures of Theorem 4.3. Since the suspen-
sion functor and the loop functor are preserved under Quillen equivalences, we
can construct Σ and Ω in either the RP -model structure or RI-model structure.
Hence to construct the suspension of a given R-representation M ∈ Rep(Q, R)
we begin by observing that it is RI-cofibrant (since everything is so) and then we
consider an exact sequence

0→M
ι−→ IM → coker(ι)→ 0

where IM is an injective R-representation, and ι is a RI-cofibration (i.e. vertexwise
injective). We define ΣM = coker(ι). Dually, using the RP -model structure on
Rep(Q, R) we can construct the loop ΩM as the R-representation fitting in a
short exact sequence

0→ ΩM → PM →M → 0

with PM projective in Rep(Q, R).
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Our aim is now to show that Ho(Rep(Q, R)) is triangle equivalent to the stable
categories GProj(Λop) and GInj(Λop); as a consequence it is an algebraic category
which satisfies three different universal properties. As we will see, the same holds
for GProj(Λop) and for GInj(Λop). We first need to recall the following result.

Theorem 5.2 (Hovey, [17]). Let G be a 1-Gorenstein ring. Then Σ and Ω are
inverse equivalences of Ho(Mod(G)), therefore Ho(Mod(G)) is triangulated and
Σ is the shift functor. Moreover:

HomHo(Mod(G))(ΩM,N) ∼= HomHo(Mod(G))(M,ΣN)

∼= Ext1(GPM,N) ∼= Ext1(M,GIN)

where GPM is a RP -cofibrant replacement for M while GIN is a RI-fibrant re-
placement for N.

Theorem 5.3. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius ring.
Consider the path algebra Λ = RQ. Then there exist equivalences of triangulated
categories

GProj(Λop) ' Ho(Rep(Q, R)) ' GInj(Λop).

In particular, Ho(Rep(Q, R)) is an algebraic category.

Proof. Consider the composite functor

δ : GProj(Λop) ↪→Mod(Λop)
'−→ Rep(Q, R)

γR−−→ Ho(Rep(Q, R))

where Rep(Q, R)
γR−−→ Ho(Rep(Q, R)) is the projection on the homotopy cate-

gory with respect to the RP -model structure. Clearly δ sends all the projective
Λop-modules to zero in Ho(Rep(Q, R)) and then there exists a lifting functor

δ̃ : GProj(Λop)→ Ho(Rep(Q, R)) such that δ = δ̃◦γΛ where γΛ : GProj(Λop)→
GProj(Λop) is the projection on the stable category. One can easily see that δ̃ is
the identity on objects and that it is a dense functor since every R-representation
is naturally isomorphic to its RP -cofibrant replacement (which is Gorenstein-
projective). Anyway it is possible to explicitly exhibit the quasi-inverse functor of

δ̃. Indeed, consider the composite functor

ω : Rep(Q, R)
GP−−→ GProj(Λop)

γΛ−−→ GProj(Λop)

where Rep(Q, R)
GP−−→ GProj(Λop) is the RP -cofibrant replacement functor,

while the functor GProj(Λop)
γΛ−−→ GProj(Λop) is simply the projection on the

stable category. By Proposition 4.10 it is immediate to see that every RP -stable
equivalence in Rep(Q, R) is sent to an isomorphism in GProj(Λop).

Hence, by the universal property of Ho(Rep(Q, R)) there exists a lifting func-
tor ω̃ : Ho(Rep(Q, R))→ GProj(Λop) such that ω = ω̃ ◦ γR. It is now straight-

forward to check that ω̃ is the required quasi-inverse for δ̃.
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The second equivalence of categories can be proved dually. To conclude, no-
tice that the suspension functor Σ in Ho(Rep(Q, R)) has precisely the same de-
scription as the shift functor in the stable category of the Frobenius categories
GProj(Λop) and GInj(Λop), so that it is preserved by δ̃.

Theorem 5.3 “allows” the homotopy category Ho(Rep(Q, R)) to be called the
stable category of quiver representations over R.

Remark 5.4. One of the possible “models” (up to equivalences of categories)
for the homotopy category Ho(M) of a model category M can be constructed as
follows. Consider the full subcategory Mcf ⊆ M whose objects are those of M
that are both fibrant and cofibrant. Given two objects A,B ∈ Mcf we consider
the homotopy relation ∼h on HomMcf (A,B), see [16, Definition 1.2.4]. Then one
defines the category Mcf as follows:

1 Ob(Mcf ) = Ob(Mcf ),

2 HomMcf (A,B) =
HomMcf (A,B)

∼h
for any A,B ∈Mcf .

One of the main results in Model Category Theory, the so-called fundamental the-
orem of model categories, states that the inclusion Mcf ↪→M induces an equiv-
alence of categories Mcf ' Ho(M), see [16, Theorem 1.2.10]. Notice that in the
RP -model structure of Theorem 2.20 every R-representation is RP -fibrant and
then the subcategory of RP -fibrant-cofibrant objects is Rep(Q, R)RPcof which
corresponds to Gorenstein-projective modules. Looking at the proof of Theo-

rem 5.3 one sees that in fact the equivalence of categories Rep(Q, R)
'−→Mod(Λop)

is, in particular, a Quillen equivalence and that the homotopy relation between
Gorenstein-projective modules is precisely the relation induced by declaring two
morphisms f, g ∈ HomGProj(Λop)(A,B) stably equivalent if (f−g) factors through
a projective module in GProj(Λop).

Corollary 5.5. Let Q be a finite acyclic quiver and let R be a quasi-Frobenius ring.
Consider the path algebra Λ = RQ. Then the homotopy category Ho(Rep(Q, R))
satisfies the following universal properties.

1. Consider the composite functor

γP : GProj(Λop) ↪→Mod(Λop)
'−→ Rep(Q, R)

γR−−→ Ho(Rep(Q, R))

where Rep(Q, R)
γR−−→ Ho(Rep(Q, R)) is the projection on the homotopy

category with respect to the RP -model structure.

Given a functor α : GProj(Λop)→ C such that for every projective module
Q ∈ GProj(Λop) there is an isomorphism α(Q) ∼= α(0) in C, there exists a
lifting α̃ : Ho(Rep(Q, R))→ C such that the diagram

GProj(Λop)
α //

γP

��

C

Ho(Rep(Q, R))

α̃

88



commutes.

2. Consider the composite functor

γI : GInj(Λop) ↪→Mod(Λop)
'−→ Rep(Q, R)

γ′R−−→ Ho(Rep(Q, R))

where Rep(Q, R)
γ′R−−→ Ho(Rep(Q, R)) is the projection on the homotopy

category with respect to the RI-model structure.

Given a functor α : GInj(Λop) → C such that for every injective module
J ∈ GInj(Λop) there is an isomorphism α(J) ∼= α(0) in C, there exists a
lifting α̃ : Ho(Rep(Q, R))→ C such that the diagram

GInj(Λop)
α //

γI

��

C

Ho(Rep(Q, R))

α̃

88

commutes.

Proof. It is an immediate consequence of Theorem 5.3.

Notice that, thanks to Theorem 5.3, GProj(Λop) inherits the universal prop-
erties of GInj(Λop) and Ho(Rep(Q, R)).
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