We prove a comparison principle for unbounded weak sub/super solutions of the equation λu − div(A(x)Du) = H(x, Du) in Ω where A(x) is a bounded coercive matrix with measurable ingredients, λ ≥ 0 and ξ → H(x, ξ) has a super linear growth and is convex at infinity. We improve earlier results where the convexity of H(x, ·) was required to hold globally.
On the comparison principle for unbounded solutions of elliptic equations with first order terms / Leonori, Tommaso; Porretta, Alessio. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 457:(2018), pp. 1492-1501. [10.1016/j.jmaa.2017.04.018]
On the comparison principle for unbounded solutions of elliptic equations with first order terms
LEONORI, TOMMASO;PORRETTA, Alessio
2018
Abstract
We prove a comparison principle for unbounded weak sub/super solutions of the equation λu − div(A(x)Du) = H(x, Du) in Ω where A(x) is a bounded coercive matrix with measurable ingredients, λ ≥ 0 and ξ → H(x, ξ) has a super linear growth and is convex at infinity. We improve earlier results where the convexity of H(x, ·) was required to hold globally.File | Dimensione | Formato | |
---|---|---|---|
Leonori_comparison_2017.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
645.87 kB
Formato
Adobe PDF
|
645.87 kB | Adobe PDF | Contatta l'autore |
Leonori_preprint_comparison_2017.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
147.54 kB
Formato
Adobe PDF
|
147.54 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.