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Abstract. We prove a comparison principle for unbounded weak sub/super solutions of the
equation

λu− div(A(x)Du) = H(x,Du) in Ω

where A(x) is a bounded coercive matrix with measurable ingredients, λ ≥ 0 and ξ 7→ H(x, ξ)
has a super linear growth and is convex at infinity. We improve earlier results where the
convexity of H(x, ·) was required to hold globally.

1. Introduction

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain and let A(x) = (ai,j(x)) be a coercive matrix

of L∞(Ω) functions. This note is concerned with the uniqueness of unbounded solutions to the
elliptic problem

(1.1)

{

λu− div(A(x)Du) = H(x,Du) in Ω,
u = 0 on ∂Ω

where H(x,Du) is measurable with respect to x, locally Lipschitz with respect to ξ and has a
super linear growth with respect to the gradient, namely

(1.2) |H(x, ξ)| ≤ γ|ξ|q + f(x) for a.e. x ∈ Ω and every ξ ∈ R
N ,

for some q > 1 and f(x) belonging to some Lebesgue space Lm(Ω), which will be detailed later.
It is well known that, if ξ 7→ H(x, ξ) is locally Lipschitz and has at most linear growth, then

problem (1.1) admits a unique weak solution in the Sobolev space H1
0 (Ω). This is no longer true

in case of super linear growth of the first order terms, and uniqueness may fail. For example,
the function

(1.3) u(x) = cq,N
(

|x|−
2−q
q−1 − 1

)

is a nontrivial solution of the problem

(1.4)

{

−∆u = |Du|q in B1(0),

u = 0 on ∂B1(0),

in the distributional sense, if N/(N − 1) < q < 2 and for a suitable choice of the constant
cq,N > 0. In particular, this is also a non trivial H1

0 (Ω) solution if 1 + 2
N

< q < 2.
This shows that the comparison principle does not hold straightforwardly for elliptic equations

with super linear first order terms in the class of unbounded solutions, so this issue should be
handled with care.

Let us give a brief summary of what is known in the literature. First of all, we recall that the
case of super quadratic growth (q > 2 in (1.2)) has different features; in this case uniqueness fails
even for continuous H1

0 (Ω) solutions, and one needs to use viscosity solutions, as in first order

Date: January 20, 2017.

1



2 T. LEONORI AND A. PORRETTA

problems, in order to have comparison principles (see [BD], [BRS]). However this approach is
restricted to continuous coefficients, and falls outside the spirit of this note, where we deal, in
particular, with just measurable x-dependence and possibly unbounded data.

The case q = 2 is also a bit special; comparison principles were proved in [BM] (for bounded
weak solutions) and in [BBGK] for solutions having a certain exponential integrability, namely
such that eγu ∈ H1(Ω) for some γ > 0 depending on the growth of H (1.2). As is well-known,
this exponential integrability is related to the Hopf-Cole change of unknown which transforms a
problem with purely quadratic Hamiltonian into a linear one, where uniqueness is depending on
the Fredholm alternative. This is very peculiar and restricted to the case q = 2, which therefore
appears as a special threshold for this kind of problems. We also refer to [ADaP] for a discussion
of the quadratic case and a classification of the possible multiplicity of unbounded solutions.

For N
N−1 < q < 2, it was shown in [BP] that uniqueness holds for solutions of (1.1) such that

(1.5) (1 + |u|)σ−1u ∈ H1
0 (Ω) , where σ = (N−2)(q−1)

2(2−q) .

Notice that the exponent σ is such that σ → ∞ as q → 2, which is somehow consistent with
the quadratic growth case (as mentioned above, in that case the uniqueness result needs some
exponential of u in H1

0 (Ω)). Moreover, the uniqueness class (1.5) is shown to be optimal by
example (1.3)–(1.4), which exhibits a radial non trivial solution satisfying |u|ρ−1u ∈ H1

0 (Ω) for
all ρ < σ.

Two different methods were used in [BP] to prove the uniqueness of solutions in the class
(1.5). One approach stands on a linearization argument; roughly speaking, if u1 and u2 are two
solutions, then one estimates

|H(x,Du1)−H(x,Du2)| . c [b(x) + |Du1|
q−1 + |Du1|

q−1]|D(u1 − u2)|

for some function b(x) in a consistent Lebesgue class. Therefore the difference u1 − u2 nearly
satisfies a linear equation

{

λw − div (A(x)Dw) . B(x)|Dw| in Ω

w ≤ 0 on ∂Ω .

It is well known that one needs here B(x) ∈ LN (Ω) in order to conclude that w ≤ 0 in Ω. In our
concrete case, this requires to know that Dui ∈ LN(q−1)(Ω), i = 1, 2. But unfortunately, this
kind of regularity of the gradient can not always be proved to hold true. In [BP], this approach is
used , and employed under sufficiently general assumptions, whenever q ≤ 1 + 2

N
. In particular,

if N
N−1 < q ≤ 1 + 2

N
, any solution in the class (1.5) satisfies the LN(q−1)- integrability of the

gradient which is needed for this argument to apply. If q < N
N−1 , this even works for W 1,q

solutions (see also [AP]), since in this case N(q − 1) < q and this regularity is actually already
included in the requirement that the equation holds in L1(Ω) (this is why the counterexample
(1.4) only works for q > N

N−1 ).

On the other hand, if 1 + 2
N

< q, the LN(q−1)- integrability of the gradient required by
the above linearization argument can not be justified unless one has suitable higher estimates,
equivalent, roughly speaking, to the W 2,p Calderon-Zygmund regularity. But this is not allowed
if we only deal with just measurable coefficients. Therefore, for 1 + 2

N
< q < 2 a different

approach was used in [BP] relying on the convexity of H(x, ξ) with respet to ξ. In this case
one tries to obtain an estimate like H(x,Du1) − H(x,Du2) . CH(x,D(u1 − u2)), which can
be made rigorous joining the convexity of H with a perturbation argument. Unfortunately this
idea, which is not unusual in Hamilton-Jacobi and viscosity solutions theory, requires stronger
conditions for the uniqueness results in the range 1 + 2

N
< q < 2 rather than those used in the

range q ≤ 1 + 2
N
.
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The purpose of this note is, precisely, to improve the results obtained in [BP] for the range
1 + 2

N
< q < 2. By refining the idea mentioned above, we will obtain a uniqueness result which

only requires the Hamiltonian H(x, ξ) to be convex at infinity (i.e. for |ξ| large). In particular,
we show that the comparison, and uniqueness, hold for solutions of (1.1) which belong to the
class (1.5), whenever ξ 7→ H(x, ξ) is a smooth function which is convex for |ξ| sufficiently large
and satisfies the growth (1.2). By relaxing the global convexity required in [BP], this extension
is more satisfactory as far as the generality of the nonlinearity H is concerned.

Let us now be more detailed by stating the main result below. First of all, we recall that a
weak sub-solution (or super-solution) of the equation

(1.6) λu− div(A(x)Du) = H(x,Du) in Ω

is a function u ∈ H1(Ω) such that

λ

∫

Ω

uϕdx+

∫

Ω

A(x)DuDϕdx ≤ (≥)

∫

Ω

H(x,Du)ϕdx ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) .

We will say that u is a strict sub solution if it satisfies, in the above weak sense,

λu− div(A(x)Du) ≤ H(x,Du)− δ

for some δ > 0. Similarly, v is a strict super solution if

λv − div(A(x)Dv) ≥ H(x,Dv) + δ

for some δ > 0.
As usual, for two functions u, v ∈ H1(Ω), we say that u ≤ v on ∂Ω whenever (u−v)+ ∈ H1

0 (Ω).

We suppose that H(x, ξ) is a Carathéodory function (measurable with respect to x and con-
tinuous with respect to ξ) such that ξ 7→ H(x, ξ) is locally semi-convex, namely

(1.7) ∀ K > 0 ∃ cK : ξ 7→ H(x, ξ) + cK |ξ|2 is convex in BK(0) := {ξ ∈ R
N : |ξ| ≤ K}

and, in addition, H(x, ξ) is convex at infinity, namely

(1.8) ∃R > 0 : ξ 7→ H(x, ξ) is convex in BR(0)
c := {ξ ∈ R

N : |ξ| > R}.

Let us stress that the above conditions are satisfied by any C2 function h(ξ) which is convex as
|ξ| is sufficiently large. This is clearly a simple though general case for the following statement
to be used.

Theorem 1.1. Let A(x) = (ai,j(x)) be a matrix such that

(1.9) ai,j(x) ∈ L∞(Ω) and A(x) ≥ α I , for some α > 0.

Assume that ξ 7→ H(x, ξ) satisfies (1.7)–(1.8) and the growth condition (1.2), with 1+ 2
N

≤ q < 2

and f ∈ L
N

q′ (Ω), where N > 2 and q′ = q
q−1 .

Let u and v be a (weak) subsolution and a supersolution, respectively, of (1.6) such that

(1 + |u|)σ−1u, (1 + |v|)σ−1v ∈ H1(Ω) with σ = (N−2)(q−1)
2(2−q) . Assume that either λ > 0 or λ = 0

and one between u and v is strict. If u ≤ v at ∂Ω, then u ≤ v in Ω.
In particular, under the above assumptions, problem (1.1) has a unique solution in the class

(1.5).

Several comments and remarks follow below as a complement of the above statement.

(1) As mentioned above, see also the example (1.3)–(1.4), the above regularity class of sub
and super solutions is optimal for the comparison principle to hold. We notice that σ ≥ 1
for 1 + 2

N
≤ q, so this class is a strict subset of the space H1. For λ > 0, Theorem 1.1

is an extension of [BP, Theorem 2.1], where a global convexity condition was required
upon H .
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(2) The restriction 1 + 2
N

≤ q < 2 is meaningful only for N > 2. We observe that, for

1 + 2
N

≤ q < 2, we have 2N
N+2 ≤ N

q′
< N

2 . This means that, by Sobolev embedding,

we have L
N
q′ (Ω) ⊂ H1(Ω)∗, meaning that the data still belong to the dual space of H1.

This is consistent with considering solutions in H1. On the other hand, we notice that
whenever the data f(x) belong to Lm(Ω) with m > N

2 , then solutions are expected to
be bounded, and the uniqueness would follow from earlier results. Therefore, leaving

aside the case of f ∈ L
N
2 (Ω), which is borderline (related to the case q = 2 and to the

exponential integrability of solutions, as mentioned before, see [BBGK]), the interesting

class of data which lead to unbounded solutions precisely occurs for f ∈ L
N
q′ (Ω) with

q < 2.

(3) Let us stress that a similar result would also hold for N
N−1 < q < 1 + 2

N
, however in this

range L
N

q′ (Ω) is not included in the dual space H1(Ω)∗, so one would not be allowed to
use standard H1 weak solutions. For a suitable comparison principle, in that case one
needs to use the more general framework of renormalized solutions. On one hand, up
to changing weak with renormalized formulations, the same result would be true, and
would result as an extension of [BP, Theorem 3.1]. On another hand, if 1 < q < N

N−1 ,

the class (1.5) does not bring any significant extra information and it is no more required
for comparison principles, which can be directly proved for renormalized solutions.

However, we stress once more that in the range q ≤ 1+ 2
N

the approach by linearization
already provides different, and general, results, see [BP], [BMMP1], [BMMP2].

(4) As is well known, the comparison principle is more delicate when λ = 0. This is why
we asked the extra condition that one between u or v is a strict (sub solution or super
solution respectively). When ξ 7→ H(x, ξ) is convex, this extra condition can be replaced
by the assumption that (1.6) admits a strict sub solution (or a strict super solution). In
that case, if for example ϕ is a strict sub solution of (1.6), the convexity of H would
imply that (1 − ε)u + εϕ is itself a strict sub solution. One could therefore compare
(1− ε)u+ εϕ with v and conclude by letting ε → 0.

Actually, we conjecture that whenever (1.6) admits a sub-solution (in the right class,
i.e. (1.5)), then it also admits a strict sub solution. This is true for bounded sub
solutions, at least if H(x, ·) is convex: in that case, the existence of a bounded sub
solution of (1.6) implies the existence of a solution to (1.1) and this implies that there
exists some c > 0 and some ϕ ∈ H1 ∩L∞(Ω) such that −div(A(x)Dϕ) + c = H(x,Dϕ).
This fact follows from [P, Proposition 1.1] (at least for H(x, ξ) = |ξ|q + f(x)) and is
related to the characterization of the solvability of (1.1) in terms of the strict sign of
the so-called ergodic constant of the state constraint problem. It would be interesting to
extend this result to the unbounded case; if the same conclusion remains true, then the
comparison principle for the case λ = 0 would not need extra conditions.

The proof of Theorem 1.1 will be given in the next Section. Actually, we will derive this result
as a corollary of a slightly more general one, in which we assume that the function H can be
split as, roughly speaking, the sum of a convex and a Lipschitz function. We will show later that
this is always possible when H satisfies the structure conditions of Theorem 1.1.

2. Proof of the result

Here we state the comparison principle in a slightly more general version. Let us consider the
equation

(2.1) λu− div (A(x)Du) +H(x,Du) = 0 in Ω
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where A(x) ∈ L∞(Ω)N×N satisfies (1.9) and H(x, ξ) is a Carathéodory function satisfying the
growth condition (1.2). We assume additionally that H can be decomposed as

(2.2) H(x, ξ) = H1(x, ξ) +H2(x, ξ)

where Hi(x, ξ) : Ω× R
N → R

N , i = 1, 2 are Carathedory functions which satisfy, for a.e. x ∈ Ω
and for any ξ, η ∈ R

N :

ξ 7→ H1(x, ξ) is convex(2.3)

and

∃ L ≥ 0 : |H2(x, ξ) −H2(x, η)| ≤ L |ξ − η|

H2(x, ξ)− (1− ε)H2(x,
ξ

1− ε
) ≤ 0

(2.4)

for ε sufficiently small.
Hence we have the following comparison result.

Theorem 2.1. Assume that A(x) satisfies (1.9) and that H(x, ξ) satisfies (1.2) (with 1 + 2
N

≤

q < 2 and f ∈ L
N
q′ (Ω)) and (2.2)–(2.4). Let u and v be a (weak) subsolution and a supersolution,

respectively, of (2.1) such that (1 + |u|)σ−1u, (1 + |v|)σ−1v ∈ H1(Ω) with σ = (N−2)(q−1)
2(2−q) .

Assume that either λ > 0 or one between u, v is strict. If u ≤ v at ∂Ω, then u ≤ v in Ω.

Proof. Let us set A(z) := − div (A(x)Dz) and, for any function z, denote by Tn(z) :=
min(n,max(z,−n)) the standard truncation function. By [BP, Lemma 2.1], un := Tn(u) satisfies

λun +A(un) +H(x,Dun) ≤ Iun in Ω,

for some Iun ∈ L1(Ω) such that

(2.5) lim
n→+∞

n2σ−1 ‖Iun‖L1(Ω) = 0 .

Similarly, vn := Tn(v) satisfies

λvn +A(vn) +H(x,Dvn) ≥ Ivn

where Ivn also satisfies (2.5). Now we define un,ε = (1 − ε)un. Hence we obtain, subtracting the
two equations and using (2.2):

(2.6)
λ(un,ε − vn) +A(un,ε − vn) ≤ H1(x,Dvn)− (1− ε)H1

(

x,
Dun,ε

1−ε

)

+H2(x,Dvn)− (1 − ε)H2(x,
Dun,ε

1−ε
) + (1 − ε)Iun − Ivn − δ(1 − ε) ,

where δ = 0 unless one between u and v is a strict sub or super solution.
Using the convexity of H1, we have

H1(x,Dvn)− (1 − ε)H1

(

x,
Dun,ε

1− ε

)

≤ εH1

(

x,
Dvn −Dun,ε

ε

)

while thanks to (2.4) we have that

H2(x,Dvn)− (1 − ε)H2(x,
Dun,ε

1− ε
) ≤ H2(x,Dvn)−H2(x,Dun,ε) ≤ L |Dvn −Dun,ε| .
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Plugging the above inequalities into (2.6) we get

λ(un,ε − vn) +A(un,ε − vn) ≤ εH1

(

x,
Dvn −Dun,ε

ε

)

+ L |D(un,ε − vn)|+ (1− ε)Iun − Ivn − δ(1− ε)

≤ε γ

∣

∣

∣

∣

Dvn −Dun,ε

ε

∣

∣

∣

∣

q

+ εf(x) + 2L |D(un,ε − vn)|+ (1 − ε)Iun − Ivn − δ(1 − ε) in Ω ,

where we used, in the last step, that H1 = H − H2 together with the growth conditions (1.2)
and (2.4).

Define now wn,ε :=
un,ε−vn

ε
; dividing by ε the above inequality we get

λwn,ε +A(wn,ε) ≤ γ |Dwn,ε|
q + 2L |Dwn,ε|+ f(x) +

1

ε
[(1− ε)Iun − Ivn]−

δ

ε
(1− ε) .(2.7)

It is known (see [GMP1], [GMP2]) that an a priori estimate in a suitable Lebesgue space holds
for sub solutions of

λz +A(z) = C |Dz|q + F (x)

whenever q ∈ (1, 2) and F ∈ L
N
q′ (Ω) if either λ > 0 or the norm of F in L

N
q′ (Ω) is sufficiently

small. Following the above references, we get here similar estimates, the only difference being the
error term depending on n. For the reader’s convenience, we detail below all the steps leading
to those estimates.

We multiply the inequality (2.7) with the test function (wn,ε−k)2σ−1
+ , k > 0. Notice that this

test function vanishes on ∂Ω (in weak sense), since u ≤ v, in particular we have (wn,ε−k)2σ−1
+ ∈

H1
0 (Ω) ∩ L∞(Ω) and is an admissible test function.
In addition, since (wn,ε − k)2σ−1

+ ≤ c n2σ−1, we obtain

λ

∫

Ω

wn,ε(wn,ε − k)2σ−1
+ +

∫

Ω

A(x)Dwn,ε∇[(wn,ε − k)2σ−1
+ ] ≤ γ

∫

Ω

|Dwn,ε|
q(wn,ε − k)2σ−1

+

+ 2L

∫

Ω

|Dwn,ε|(wn,ε − k)2σ−1
+ +

∫

Ω

[

f(x)−
δ

ε
(1− ε)

]

(wn,ε − k)2σ−1
+

+
c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

Using |ξ| ≤ 1 + |ξ|q, we can absorb the linear growth term of the right-hand side obtaining

λ

∫

Ω

wn,ε(wn,ε − k)2σ−1
+ +

∫

Ω

A(x)Dwn,ε∇[(wn,ε − k)2σ−1
+ ] ≤ γ̃

∫

Ω

|Dwn,ε|
q(wn,ε − k)2σ−1

+

+

∫

Ω

[

f̃(x) −
δ

ε
(1− ε)

]

(wn,ε − k)2σ−1
+ +

c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) ,

(2.8)

for, say, γ̃ = γ + 2L and f̃ = f + 2L.
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Let us first deal with the case that λ > 0 (δ can be taken to be zero in this case). Then we
estimate

∫

Ω

f̃(x)(wn,ε − k)2σ−1
+ ≤ λk

∫

Ω

(wn,ε − k)2σ−1
+ +

∫

{f̃>λ k}

f̃(x)(wn,ε − k)2σ−1
+

≤ λ

∫

Ω

wn,ε(wn,ε − k)2σ−1
+ +

∫

{f̃>λ k}

f̃(x)(wn,ε − k)2σ−1
+ .

Hence from (2.8) we deduce
∫

Ω

A(x)Dwn,ε∇[(wn,ε − k)2σ−1
+ ] ≤ γ̃

∫

Ω

|Dwn,ε|
q(wn,ε − k)2σ−1

+

+

∫

{f̃>λ k}

f̃(x)(wn,ε − k)2σ−1
+ +

c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

Using the coercivity of A(x) and since Dwn,ε∇[(wn,ε − k)2σ−1
+ ] = 2σ−1

σ2 |D(wn,ε − k)σ+|
2 we get,

for some (possibly different) constants c only depending on q,N ,
∫

Ω

|D(wn,ε − k)σ+|
2 ≤ c

∫

Ω

|Dwn,ε|
q(wn,ε − k)2σ−1

+

+ c

∫

{f̃>λk}

f̃(x)(wn,ε − k)2σ−1
+ +

c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) ,

which implies
∫

Ω

|D(wn,ε − k)σ+|
2 ≤ c

∫

Ω

|D(wn,ε − k)σ+|
q(wn,ε − k)

2σ−1−q(σ−1)
+

+ c

∫

{f̃>λk}

f̃(x)(wn,ε − k)2σ−1
+ +

c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

We use Hölder’s inequality in the two integrals of the right-hand side, obtaining

∫

Ω

|D(wn,ε − k)σ+|
2 ≤ c

(
∫

Ω

|D(wn,ε − k)σ+|
2

)

q
2

(
∫

Ω

(wn,ε − k)
(2σ−1−q(σ−1)) 2

2−q

+

)1− q
2

+ c ‖f̃(x)χ{f̃>λ k}‖
L

N
q′ (Ω)

‖(wn,ε − k)2σ−1
+ ‖

L
N

N−q′ (Ω)

+
c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) ,

(2.9)

where, for any set E ⊂ Ω, we denote by χE the indicatrix function of the set E.

The precise value of σ = (q−1)(N−2)
2(2−q) gives

(2σ − 1− q(σ − 1))
2

2− q
= 2∗σ and (2σ − 1)

N

N − q′
= 2∗σ
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where 2∗ = 2N
N−2 is the Sobolev exponent. Therefore, we deduce from (2.9) that

∫

Ω

|D(wn,ε − k)σ+|
2 ≤ c

(
∫

Ω

|D(wn,ε − k)σ+|
2

)

q
2

(
∫

Ω

(wn,ε − k)2
∗σ

+

)1− q
2

+ c ‖f̃(x)χ{f̃>λk}‖
L

N
q′ (Ω)

‖(wn,ε − k)+‖
2σ−1
L2∗σ(Ω)

+
c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

Young’s inequality leads us to
∫

Ω

|D(wn,ε − k)σ+|
2 ≤ c

∫

Ω

(wn,ε − k)2
∗σ

+

+ c ‖f̃(x)χ{f̃>λ k}‖
L

N
q′ (Ω)

‖(wn,ε − k)+‖
2σ−1
L2∗σ(Ω)

+
c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

Then, we use Sobolev inequality and we get
(
∫

Ω

|(wn,ε − k)+|
2∗σ

)
2

2∗

≤ c

∫

Ω

(wn,ε − k)2
∗σ

+

+ c ‖f̃(x)χ{f̃>λ k}‖
L

N
q′ (Ω)

‖(wn,ε − k)+‖
2σ−1
L2∗σ(Ω)

+
c

ε
n2σ−1(‖Iun‖L1(Ω) + ‖Ivn‖L1(Ω)) .

(2.10)

We can now let n go to infinity. Indeed, by assumption we know that u, v satisfy (1.5), which

implies that u, v ∈ L2∗σ(Ω). Therefore wn,ε converges to wε := (1−ε)u−v

ε
in L2∗σ(Ω) as n → ∞.

Moreover, due to (2.5), the last term in (2.10) vanishes as n → ∞. Finally we obtain
(
∫

Ω

|(wε − k)+|
2∗σ

)
2

2∗

≤ c

∫

Ω

(wε − k)2
∗σ

+ + c ‖f̃(x)χ{f̃>λ k}‖
L

N
q′ (Ω)

‖(wε − k)+‖
2σ−1
L2∗σ(Ω)

which implies

(2.11) ‖(wε − k)+‖L2∗σ(Ω) ≤ c ‖(wε − k)+‖
q

2−q

L2∗σ(Ω)
+ c ‖f̃(x)χ{f̃>λ k}‖

L
N
q′ (Ω)

.

where we used that 2∗σ− (2σ−1) = q
2−q

. Notice that q
2−q

> 1 since q > 1. The above inequality

reads as
Yk ≤ c Y β

k + ℓk

for some β > 1, where Yk = ‖(wε − k)+‖L2∗σ(Ω) and ℓk = c ‖f̃(x)χ{f̃>λ k}‖
L

N
q′ (Ω)

.

The conclusion of the estimate is exactly as in [GMP1]: since f̃ ∈ L
N
q′ (Ω), it is possible to

choose k0 such that ℓk < max
Y ∈(0,∞)

[Y − cY β ] for every k ≥ k0. Then, a continuity argument

(based on the fact that Yk is continuous with respect to k and vanishes for k → ∞) allows us to
conclude that Yk ≤ C for every k ≥ k0, where C is a constant only depending on q,N . Recalling
the definition of Yk, this readily implies a global estimate of wε in Lσ 2∗(Ω), namely

‖(wε)+‖L2∗σ(Ω) ≤ ‖(wε − k0)+‖L2∗σ(Ω) + k0 ≤ C + k0 .

Recalling the definition of wε, we finally deduce

‖(1− ε)u− v)+‖Lσ 2∗ (Ω) ≤ ε (C + k0)
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and letting ε → 0, we conclude that u ≤ v in Ω.

In the case that λ = 0 and one of the two (sub solution or super solution) is strict, we have
δ > 0 in (2.8). In this case we estimate

∫

Ω

[

f̃(x) −
δ

ε
(1 − ε)

]

(wn,ε − k)2σ−1
+ ≤

∫

{f̃> δ
ε
(1−ε)}

f̃(x)(wn,ε − k)2σ−1
+

and we proceed as before. Finally we obtain the same as (2.11), which would read as

‖(wε − k)+‖L2∗σ(Ω) ≤ c ‖(wε − k)+‖
q

2−q

L2∗σ(Ω)
+ c ‖f̃(x)χ{f̃> δ

ε
(1−ε)}‖

L
N
q′ (Ω)

.

Note that last term can be made arbitrarily small provided ε is small enough. In particular we
can assume that ε is sufficiently small so that

c ‖f̃(x)χ{f̃> δ
ε
(1−ε)}‖

L
N
q′ (Ω)

< max
Y ∈(0,∞)

[Y − cY β]

where β = q
2−q

. Therefore, the same continuity argument as before, made in terms of the

parameter k for the whole range k ∈ (0,∞), allows one to conclude that ‖(wε−k)+‖L2∗σ(Ω) ≤ C
for every k > 0, where C is a constant only depending on q,N . This means that, as k → 0, we
have

‖(wε)+‖L2∗σ(Ω) ≤ C

and we conclude as before letting ε → 0. �

The proof of Theorem 1.1 now follows as corollary of the above result.

Proof of Theorem 1.1. It is sufficient to observe that, on account of (1.7)–(1.8), the
function

H1(x, ξ) = H(x, ξ) + α
√

1 + |ξ|2 α ∈ R
+

is globally convex with respect to ξ, provided α is chosen sufficiently large. On the other hand, the
function H2(x, ξ) = −α

√

1 + |ξ|2 satisfies (2.4). Hence we can apply Theorem 2.1 to conclude.
�
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