We construct a new class of approximating functions that are M-refinable and provide shape preserving approximations. The refinable functions in the class are smooth, compactly supported, centrally symmetric and totally positive. Moreover, their refinable masks are associated with convergent subdivision schemes. The presence of one or more shape parameters gives a great flexibility in the applications. Some examples for dilation M=4and M=5are also given.

Totally positive refinable functions with general dilation M / Gori, Laura; Pitolli, Francesca. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - STAMPA. - 112:(2017), pp. 17-26. [10.1016/j.apnum.2016.10.004]

Totally positive refinable functions with general dilation M

GORI, Laura;PITOLLI, Francesca
2017

Abstract

We construct a new class of approximating functions that are M-refinable and provide shape preserving approximations. The refinable functions in the class are smooth, compactly supported, centrally symmetric and totally positive. Moreover, their refinable masks are associated with convergent subdivision schemes. The presence of one or more shape parameters gives a great flexibility in the applications. Some examples for dilation M=4and M=5are also given.
2017
General dilation; Refinable function; Shape-preserving; Subdivision scheme; Total positivity; Numerical Analysis; Computational Mathematics; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Totally positive refinable functions with general dilation M / Gori, Laura; Pitolli, Francesca. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - STAMPA. - 112:(2017), pp. 17-26. [10.1016/j.apnum.2016.10.004]
File allegati a questo prodotto
File Dimensione Formato  
ApNum_DilM_GoriPitolli_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Contatta l'autore
ApNum_DilationM_final.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 393.93 kB
Formato Adobe PDF
393.93 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/954570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact