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Abstract

We construct a new class of approximating functions that are M -refinable
and provide shape preserving approximations. The refinable functions in the
class are smooth, compactly supported, centrally symmetric and totally posi-
tive. Moreover, their refinable masks are associated with convergent subdivision
schemes. The presence of one or more shape parameters gives a great flexibility
in the applications. Some examples for dilation M = 4 and M = 5 are also
given.
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1. Introduction

Refinable functions with integer dilation M ≥ 2 have a relevant role in sev-
eral applications, like computer graphics and wavelets analysis as well as in the
M -channel filter bank design, just to cite a few [4, 7, 17, 18]. We emphasize
also that M -refinable functions can be evaluated by suitable iterative schemes,
namely M -ary subdivision schemes, which are strictly related to refinability.
While the case M = 2 has been thoroughly investigated, from the point of view
of both the refinability and the subdivision (see, for instance, [4, 7] and refer-
ences therein), the case M > 2 did not receive as much attention, even if the use
of a dilation greater than 2 allows one to achieve results not attainable in the
binary case. For instance, the binary counterpart of the compactly supported
symmetric orthonormal refinable functions with dilation M ≥ 3 constructed
in [5, 12] does not exist. The same thing is true for the compactly supported
interpolatory orthonormal refinable functions in [3]. Further properties of or-
thonormal refinable functions that apply just in the case when M ≥ 3 can be
found in [19]. Refinable functions with dilation M = 3 that are not orthonormal
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but are totally positive, were introduced in [11]. In this case the more flexibility
given by dilation 3 is exploited to construct a wide class of symmetric refinable
functions that have the same support and the same smoothness as the cardinal
B-splines. Once again, the same result can not be achieved in the binary case;
in fact, totally positive refinable functions with dilation M = 2 are less smooth
than the cardinal B-splines having the same support [10].

Our aim is to construct M -refinable functions with general dilation M > 2
that provide shape preserving approximations. To this end, we will use the total
positivity property of functions [13]. In fact, if a function f is totally positive, the
variation diminishing property holds, i.e. for any sequence g = {g(i), i ∈ I ⊂ Z}
of finite support there results

S−
(∑
i∈I

g(i) f(· − i)
)
≤ S−(g) , (1.1)

where the symbol S− denotes the strict sign changes of its argument. The
variation diminishing property is stronger than other shape preserving prop-
erties, such as monotonicity or convexity preservation, since it implies that
given a polygonal arc π : A0A1 . . . AN with Ai = (xi, yi) ∈ R2, the curve

r(t) =
∑N
i=0 Ai f(t− i) closely mimics the shape of π [8]. It is then evident the

interest that totally positive systems of functions take both in approximation
theory and in the design of curves for CAGD applications.

In this paper we introduce a new class of M -refinable functions, with M > 2,
and prove that they are totally positive. These functions share several prop-
erties, such as the compact support and the smoothness, with the cardinal B-
splines, which are contained in it as a particular case. Nevertheless, these new
refinable functions are more flexible in the applications because they depend on
some shape parameters.
The paper is organized as follows. The definitions and some basic properties
concerning refinable functions and subdivision schemes, are presented in Sec-
tion 2. In Section 3, a class of palindromic polynomials is introduced and some
properties of peculiar interest in this context are proved. Section 4 contains the
main result of the paper, since here it is proved that any of the above poly-
nomials gives rise to a totally positive refinable function. A detailed analysis
of some particular refinable functions in the class having dilation M = 4 and
M = 5 is presented in Section 5, where also the corresponding quaternary and
5-ary subdivision schemes are discussed. Moreover, we will construct a set of
interpolatory quaternary subdivision schemes using a technique introduced in
[1] to derive interpolatory schemes from approximating schemes with even arity.
Even if these interpolatory schemes are not shape preserving, nevertheless we
will show that they preserve monotonicity and convexity in same special cases.

2. Preliminaries

A refinement equation is a functional equation of the form

ϕa(x) =
∑
j∈Z

a(j)ϕa(M x− j) , (2.1)
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where M is the dilation factor and a = {a(j), j ∈ Z} is the refinable mask.
In the following, we assume that M is an integer ≥ 2, and a belongs to l0(Z),
where l0(Z) denotes the linear space of finitely supported sequences on Z.
Any solution ϕ of a refinement equation is called a M -refinable function and a
necessary condition for its existence is∑

j∈Z
a(j) = M. (2.2)

The best known example of M -refinable functions, for any dilation M , is pro-
vided by the cardinal B-splines of any degree n (for the expression of their
masks, see, for instance, [11, 14]).
To the mask a is associated the symbol, namely the Laurent polynomial given
by its z-transform

P (z) =
∑
j∈Z

a(j) zj , z ∈ C\{0}. (2.3)

Several properties of the refinable function ϕ can be deduced from the features
of the associated mask. In particular, if a satisfies the sum rules∑

i∈Z
a(Mi+ j) = 1 , j = 0, 1, . . . , M − 1, (2.4)

then the refinement equation has at most one solution ϕ ∈ L1(R).
It is well known that refinability is strictly connected to subdivision. In fact, a
given mask a gives rise to a subdivision scheme that, starting from an initial
sequence g0 = {g0(j), j ∈ Z} , generates denser and denser sequences of points
by the iterative rule

gk+1 = Sa gk , k ≥ 0 , (2.5)

where Sa is the subdivision operator defined as

Sa g(j) =
∑
i∈Z

a(j −Mi) g(i) , j ∈ Z . (2.6)

Under suitable conditions, the subdivision scheme (2.5) converges to a continu-
ous function, i.e. there exists an uniformly continuous function Fg,a satisfying

lim
k→∞

sup
j∈Z
|gk(j)− Fg,a(M−kj)| = 0 . (2.7)

If the subdivision scheme converges, one has

Fg,a(x) =
∑
j∈Z

ϕa(x− j) g0(j) , (2.8)

where ϕa is the M -refinable function solution of the refinement equation (2.1).
In conclusion, to a given mask we can associate both a refinable function and
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a subdivision scheme, and the behavior of the latter largely derives from the
properties of the associated refinable function. Thus, while a subdivision scheme
provides an efficient algorithm to evaluate approximating functions of a discrete
set of data, in the continuous setting we can deduce the properties of the ap-
proximation looking at the properties of the function system {ϕ(x − j)}. This
is the main reason that motivate our interest toward refinable functions.

3. A set of palindromic symbols

We now introduce a particular set of palindromic polynomials, putting in ev-
idence some of their properties that will play a basic role in the construction of
the class of refinable functions that will be introduced in the next Section. We
recall that a polynomial is said palindromic if its coefficients form a palindromic,
i.e. centrally symmetric, sequence.
We first consider a palindromic sequence of real numbers c = {c(j), j = 0, 1, . . . ,M−
1} and a polynomial

qM (z) :=

M−1∑
j=0

c(j) zj , (3.1)

satisfying the following conditions:

c(j) > 0 , j = 0, 1, . . . ,M − 1, (3.2)

and

qM (1) =

M−1∑
j=0

c(j) = 1 . (3.3)

Next, starting from qM , we introduce the set of polynomials PM,n expressed by

PM,n(z) =
1

Mn

(
1− zM

1− z

)n+1

qM (z) . (3.4)

In particular, for n = 0 one has

PM,0(z) =

(
1− zM

1− z

)
qM (z) , (3.5)

so that equation (3.4) yields

PM,n(z) =
1

Mn

(
1− zM

1− z

)n
PM,0(z) . (3.6)

In order to investigate the properties of PM,n, it is convenient to first analyze
in detail the behavior of PM,0. Let us write PM,0 in the form

PM,0(z) =

2M−2∑
j=0

aM,0(j) zj . (3.7)
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Then, it is evident that the sequence aM,0 = {aM,0(j), j = 0, 1, . . . , 2M − 2}
is positive and palindromic, since such are the sequences of coefficients in both
factors of (3.5). The dependence of aM,0 on c can be obtained expanding the
product in (3.5), which yields both

aM,0(j) =

j∑
i=0

c(i) , j = 0, 1, . . . ,M − 2 , (3.8)

and

aM,0(M − 1) =

M−1∑
i=0

c(i) = q(1) = 1 . (3.9)

As a consequence of the property of PM,0 to be a palindrome, the coefficients
aM,0(j), j = 0, 1, . . . ,M − 2, satisfy the equation

aM,0(M + j) = aM,0(M − j − 2) , j = 0, 1, . . . ,M − 2 . (3.10)

Moreover, the sequence aM,0 satisfies the sum rules∑
i

aM,0(Mi+ j) = 1 , j = 0, 1, . . . ,M − 1 . (3.11)

Now, it easy to show that the sequence aM,n = {aM,n(j), j = 0, 1, . . . , 2n(M −
1)2}, defined as

PM,n(z) =

2n(M−1)2∑
j=0

aM,n(j) zj , (3.12)

is palindromic and satisfies the sum rules, too.

4. A class of totally positive refinable functions with general dilation
M

The aim of this Section is to prove that the refinement equation

ϕM,n(x) =

2n(M−1)2∑
j=0

aM,n(j)ϕM,n(M x− j) , x ∈ R , (4.1)

has a unique solution ϕM,n having the properties established in Theorem 4.1
and totally positive, as proved in Theorem 4.2. For short notation, in the sequel
we will call a ripplet a function which is totally positive.

Theorem 4.1. Given any integer M ≥ 2 and any integer n ≥ 0, the polyno-
mial PM,n in (3.4) is the symbol of a unique refinable function ϕM,n ∈ Cn(R),
compactly supported on [0, n+ 2], positive in (0, n+ 2), and forming a partition
of unity.
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Proof. The case M = 2 is trivial. In this case, in fact, by condition (3.2), the
polynomial P2,n reduces to the symbol of the cardinal B-spline Nn+1 of degree
n+ 1. Therefore we assume M ≥ 3.
We first examine the case n = 0. The polynomial qM verifies condition (3.3)
and, due to (3.2), the condition below holds

max
i

(∑
j

c(i+Mj), i = 0, 1, . . . ,M − 1
)

= max
i

(c(i), i = 0, 1, . . . ,M − 1) < 1 .

(4.2)
Thus, we can conclude (cf. [9, Th. 3.1]) that the polynomial PM,0 is the symbol
of a continuous, non-negative function, say ϕM,0, such that

ϕM,0(x) =

2M−2∑
j=0

aM,0(j)ϕM,0(Mx− j) , x ∈ R , (4.3)

and ∑
j∈Z

ϕM,0(x− j) = 1 , x ∈ R . (4.4)

The support of ϕM,0 is [0, 2]. In fact, if the mask of a refinement equation
of dilation M is supported on [0, N ], then the refinable function has support
[0, N/(M − 1)] [9]. Moreover ϕM,0(z) is positive for x ∈ (0, 2), since the mask
aM,0 is positive [9], and is centrally symmetric, due to the property of aM,0 to
be a palindrome. Finally, the function ϕM,0 is unique due to the presence of the
factor (1− zM )/(1− z) in its symbol.
Consider now the polynomial PM,1. It is given by the product of 1

M times the
symbol of the B-spline N0 of degree 0 and the symbol of ϕM,0. Then, PM,1 is
the symbol of a refinable function given by the convolution product (see [11,
Lemma 2.1])

ϕM,1 = N0 ∗ ϕM,0 . (4.5)

Thus, ϕM,1 belongs to C1(R). Since the mask of the refinement equation with
symbol PM,1 has support in [0, 3M − 3], ϕM,1 is compactly supported on [0, 3]
and positive in (0, 3).
Iterating the reasoning enables us to conclude that the polynomial PM,n is the
symbol of the refinable function

ϕM,n = N0 ∗ ϕM,n−1 , (4.6)

that turns out to be unique, compactly supported on [0, n+2], positive in (0, n+
2), belonging to Cn(R) and forming a partition of unity. The central symmetry
of ϕM,n is a consequence of the palindromic property of the polynomial PM,n.

It is worth to observe that, due to the convolution property (4.6), the following
derivation rule holds:

DϕM,n(x) = ϕM,n−1(x)− ϕM,n−1(x− 1) , n ≥ 1 . (4.7)
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Remark. We notice that the existence and continuity of ϕM,0 can be also
proved by proving the convergence of the M -arity subdivision scheme associ-
ated to the mask aM,0. In fact, generalizing to the case M > 2 some well-known
results on binary schemes [7], the convergence of the subdivision scheme SaM,0

and the continuity of the corresponding basic limit function ϕM,0 are a conse-
quence of the contractivity of the difference scheme Sc. Moreover, the symbol
factorization (3.6) implies the existence and the Cn-continuity of the basic limit
functions ϕM,n of the corresponding subdivision scheme. Finally, the support,
the positivity and the central symmetry of ϕM,n follow from some results in
[1, 15, 20]. Nevertheless, the continuous setting allows us to prove that the re-
finable functions ϕM,n are totally positive so that the corresponding subdivision
schemes inherit the same shape-preserving properties that the function system
{ϕM,n(x − i)} has. As a consequence, at any iteration step of the subdivision
procedure the sequence

gk+1 = SaM,n gk , k ≥ 0 , (4.8)

closely mimics the shape of the starting sequence g0. In particular, the number
of times the sequence gk+1 crosses any straight line L is bounded by the number
of times the sequence gk crosses L.

In the following, we shall denote by Φ the class of the refinable functions
ϕM,n. In particular, Φ can be considered as a generalization of the system of
the cardinal B-splines with any dilation. Yet preserving the main B-spline nice
properties, the ϕM,n functions present the additional advantage of having at
disposal one or more shape parameters that allow us to get a great flexibility in
the design of curves, as shown in the examples in the next Section.
A property of the functions in the class Φ that has a relevant significance in this
context is established in the next theorem in which we prove that any refinable
function belonging to Φ is a ripplet.

Theorem 4.2. The system of the integer translates of any refinable function
ϕM,n ∈ Φ is totally positive and normalized.

Proof. Let first consider ϕM,0 for any M ≥ 2. Its symbol PM,0, given by (3.7),
has strictly positive coefficients (cf. 3.3). Moreover, one has PM,0(1) = M .
Next, associate to PM,0 the following determinants

∆(k) = det
(
aM,0(Mj − i+ β

)
, i, j = 0, 1, . . . , α) , k = 1, 2, . . . , 2M − 2 ,

(4.9)
where k = (M − 1)α+ β with α, β integer numbers and β = 1, 2, ..,M − 1.
The determinants (4.9) have order α+ 1. For k = 1, 2, ..,M − 1 one has α = 0,
β = k, and then ∆(k) = aM,0(k) > 0. For k = M,M +1, .., 2M −2 there results
α = 1 and β = k −M + 1, so that

∆(k) =

∣∣∣∣ aM,0(β) aM,0(M + β)
aM,0(β − 1) aM,0(M + β − 1)

∣∣∣∣ . (4.10)
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Taking into account the sum rules (3.11) yields aM,0(β +M) = 1− aM,0(β), so
that one has

∆(k) = aM,0(β)− aM,0(β − 1) = c(β) > 0 .

Exploiting the results in [9, Th. 3.3] we can conclude that the refinable function
ϕM,0 is a ripplet .
By the convolution property (4.5), the system {ϕM,1(x− i), i ∈ Z} can be seen
as the kernel

K(t, i) =

∫
R
N0(t− x)ϕM,0(x− i) dx , (4.11)

defined for t ∈ R and i ∈ Z.
Now, ϕM,0(x−i) is a totally positive kernel as well as the kernel N0(t−x); then,
from the basic composition rule (see [13, Chap.1]), we deduce that also K(t, i)
is totally positive and normalized since (4.4) holds. Recursively applying (4.5)
we conclude that also ϕM,n is a ripplet for any M and n.

We again point out that any polynomial PM,n can be also seen as the symbol
of a stationary subdivision scheme of arity M . The above theorems claim that
these schemes are shape preserving and converge to the basic limit function
ϕM,n. We also notice that, due to the properties of qM , the refinable functions,
as well as the subdivision schemes, having PM,n as symbol depend on

b(M − 1)/2c (4.12)

shape parameters.

5. Examples

5.1. Refinable ripplets with dilation M = 4

Let us assume M = 4, n = 2. The symbol in (3.4) has expression

P4,2(z) =
1

42

(
1− z4

1− z

)3

(c(0) + c(1)z + c(1)z2 + c(0)z3) . (5.1)

From (3.3) it follows that c(1) = 1/2− c(0) so that P4,2 depends on the unique
parameter c(0). Let us introduce the parameter γ. Assuming c(0) = γ/4 and
c(1) = 1/2− γ/4 we obtain

qγ(z) := q4(z) =
γ

4
+
(1

2
− γ

4

)
z +

(1

2
− γ

4

)
z2 +

γ

4
z3. (5.2)

For γ ∈ (0, 2) the coefficients of qγ are positive. Moreover,

max
i

(
∑
j

c(i+ 4j), i = 0, 1, 2, 3 ) = max
i

c(i) = max(
γ

4
,

2− γ
4

) < 1. (5.3)

By Theorems 4.1 and 4.2, for any γ ∈ (0, 2) the polynomial P4,2 is the symbol
of a ripplet ϕ4,2 ∈ C2(R), with support [0, 4] and positive in (0, 4).
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Setting Pγ(z) := P4,2(z) =
∑12
j=0 aγ(j) zj , it is not difficult to obtain the explicit

expression of the coefficients of the mask aγ = {aγ(j), j = 0, 1, . . . , 12}:

aγ(0) = a12,γ = γ
64 ; aγ(1) = a11,γ = γ+1

32 ; aγ(2) = a10,γ = γ+4
32 ;

aγ(3) = a9,γ = γ+9
32 ; aγ(4) = a8,γ = 32−γ

64 ; aγ(5) = a7,γ = 11−γ
16 ;

aγ(6) = 12−γ
16 .

(5.4)

When γ = 1, Pγ reduces to the symbol of the cubic B-spline for dilation M = 4.
In Figure 1, the graphs of both the masks and the refinable functions ϕ4,2 for
different values of γ are displayed.
For any γ ∈ (0, 2) the polynomial Pγ is also the symbol of a 4-point approximat-
ing subdivision scheme which is convergent and has shape-preserving properties.
The subdivision rules are given by

gk+1(4i+ `) =
∑
j

aγ(4(i− j) + `) gk(j) , ` = 0, 1, 2, 3, k ≥ 0 . (5.5)

In Figure 2 the limit curves obtained by the algorithm (5.5) for different values
of γ are displayed.
Since the dilation M is an even integer, starting from these approximating
schemes it is possible to construct a family of interpolatory subdivision schemes
(cf. [1]). The coefficients of their masks aγ,I = {aγ,I(j), j = 0, 1, . . . , 14} have
expression

aγ,I(0) = aγ,I(14) =

(
− γ

32
− γ2

128

)
; aγ,I(1) = aγ,I(13) = − 1

16 ;

aγ,I(2) = aγ,I(12) =

(
− 3

32
+

γ

32
+

γ2

128

)
; aγ,I(3) = aγ,I(11) = 0;

aγ,I(4) = aγ,I(10) =

(
5

32
+ 3

γ

32
+ 3

γ2

128

)
; aγ,I(5) = aγ,I(9) = 9

16 ;

aγ,I(6) = aγ,I(8) =

(
15

16
− 3

γ

32
− 3

γ2

128

)
; aγ,I(7) = 1.

(5.6)
Thus, one gets a class of quaternary interpolatory subdivision schemes Saγ,I

that depend on the parameter γ. For any γ the symbol

Pγ,I(z) =

14∑
j=0

aγ,I(j) z
j

satisfies the necessary conditions for the convergence, i.e.

Pγ,I(1) = 4 , Pγ,I(e
i π
2 k) = 0 , k = 1, 2, 3,
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but the difference scheme associated with the symbol Pγ,I(z)(1 − z)/(1 − z4)
is contractive just when γ ∈ G0 = (−2 −

√
34,−2 +

√
34). As a consequence,

Saγ,I is convergent just for these values of the parameter γ and, in this case,
the masks aγ,I can be also view as the masks of a class of interpolating refin-
able functions ϕ4,I of compact support. Since the mask coefficients aγ,I(j) are
negative for some index j (cf. Figure 3), ϕγ,I could not be totally positive and
does not have the same shape preserving properties as ϕ4,2.
To better understand the behavior of the limit functions generated by the inter-
polatory subdivision scheme Saγ,I it is worth analyzing their polynomial repro-
duction properties. We recall that a convergent subdivision scheme is said to re-
produce polynomials up to degree µ if its limit function coincides with any given
polynomials R of degree ≤ µ whenever the initial data are sampled from R itself.
The convergence of a subdivision scheme implies that the scheme reproduces
constant functions, so that Saγ,I reproduces constants when γ ∈ G0. Linear
and quadratic polynomials can be reproduced if the difference schemes associ-
ated with the symbols Pγ,I(z)4(1−z)2/(1−z4)2 and Pγ,I(z)4

2(1−z)3/(1−z4)3

are conctractive, respectively (cf. [7, 6]). A straightforward calculation shows
that polynomials up to degree 1 are reproduced when

γ ∈ G1 = (−2−
√

10,−2−
√

2) ∩ (−2 +
√

2,−2 +
√

10) ,

while polynomials up to degree 2 are reproduced when

γ ∈ G2 = (−2−
√

8,−2−
√

6) ∩ (−2 +
√

6,−2 +
√

8) .

In particular, for γ = −2 +
√

22/3 = γ̃, we recover, as a special case, the
interpolatory mask

aγ̃,I =
1

192
(−5,−12,−13, 0, 45, 108, 165, 192, 165, 108, 45, 0,−13,−12,−5)

(5.7)
given in [6], although here it is obtained by a very different approach. Since
γ̃ ∈ G2, the subdivision scheme Saγ̃,I reproduces polynomials up to degree 2
(cf. [6]).
We notice that even if the interpolatory scheme Saγ,I in general does not preserve
the monotonicity and the convexity of the initial data, nevertheless its behavior
is very similar to the behavior of a shape-preserving subdivision scheme if γ ∈ G2

and the initial sequence is well approximated by a quadratic polynomial. This
behavior is put in evidence in Figure 4 where the limit curves obtained by the
interpolatory scheme associated to the mask aγ,I are displayed for different
values of γ.

5.2. Refinable ripplets with dilation M = 5

Let us assume M = 5, n = 1. From (3.4) we obtain the symbol

P5,1(z) =
1

5

(
1− z5

1− z

)2

(c(0) + c(1)z + c(2)z2 + c(1)z3 + c(0)z4) . (5.8)
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Figure 1: The mask aγ (left) and the refinable ripplet ϕ4,2 (right) for γ = 1 (cubic B-spline,
magenta) and γ = 1

2
(green), 1

4
(cyan), 1

16
(blue).

Figure 2: The limit curves obtained by the 4-point subdivision schemes (5.5) for different
values of the parameter γ. The control polygon (red line) and the control points (red circles)
are also displayed.
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Figure 3: The interpolating mask aγ,I and the corresponding interpolating refinable function

for γ = 1 (magenta), γ = γ̃ (green) and γ = 1
16

(blue).

Figure 4: The limit curves obtained by the interpolatory subdivision schemes associated to
the mask (5.6) for different values of the parameter γ. For γ = 1

16
or γ = 1 the subdivision

scheme reproduces linear polynomials; for γ = γ̃ it reproduces also quadratic polynomials; for
γ = 3

2
the subdivision scheme reproduces just the constant functions. The control polygon

(red line) and the control points (red circles) are also displayed.
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In this case there are 2 shape parameters, c(0), c(1), and conditions (3.2) and
(3.3) imply both

c(2) = 1− 2 c(0)− 2 c(1) , (5.9)

and

0 < c(0) <
1

2
, 0 < c(1) <

1

2
− c(0) . (5.10)

By Theorem 4.1 the polynomial P5,1 is the symbol of a refinable function ϕ5,1 ∈
C1(R), having support [0, 3] and positive in (0, 3).
Let us write the symbol P5,1 as

P5,1(z) =
1

5

12∑
j=0

b(k) zj . (5.11)

The sequence b = {b(j), j = 0, 1, . . . , 12} is palindromic and bell-shaped, i.e. it
satisfies the conditions (cf. [16])

b(j) > 0 , j = 0, 1, .., 6 , b(j) < b(j + 1) , j = 0, 1, . . . , 5 .

In fact, recalling that P5,0(z) =
∑8
j=0 a(j), by some algebra one gets

b(j) =

j∑
i=0

a(i) <
3

2
, j = 0, 1, 2 , (5.12)

b(3) =

3∑
i=0

a(i) = 2 , b(4) =

4∑
i=0

a(i) = 3 , (5.13)

3 < b(5) =

5∑
i=1

a(i) < 4 , b(6) =

6∑
i=2

a(i) > b(5) . (5.14)

The inequalities in (5.12), (5.14) and the values of b(3) and b(4) follow from the

relation
∑8
j=0 a(j) = 5 and from the palindromic property of a.

The bell-shaped property of the sequence b implies that also ϕ5,1 is bell-shaped,
since it is a ripplet (cf. Theorem 4.2), thus it satisfies the variation diminishing
property (1.1). The class of refinable ripplets ϕ5,1 contains in particular the
B-spline of degree 2, whose properties preserves, with the further advantage of
disposing of two shape parameters.
The values ϕ5,1(1) and ϕ5,1(2) can be obtained as the normalized eigenvector,
corresponding to the eigenvalue 1, of the matrix B =

(
b(5j − i)

)
. Their values

are independent from the parameters and are both equal to 1/2.
In Figure 5, the graphs of both the masks b and the refinable functions ϕ5,1 for
different values of c(0), c(1) are displayed.
We notice that an example of refinable function with dilation 5 depending on
two parameters is presented in [2], but the essential difference with ϕ5,1 is that
the function in [2] is not a ripplet and it changes sign on its support.
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Figure 5: The mask b (left) and the corresponding refinable ripplet ϕ5,1 (right) for c(0) = 1
10

(blu), 1
5

(quadratic B-spline, magenta), 3
10

(green), 2
5

(cyan) and c(1) = 5
12

− c(0).

We conclude observing that P5,1 is also the symbol of a converging shape-
preserving 3-point subdivision scheme of arity 5 whose subdivision rules are
given by

gk+1(5i+ `) =
∑
j

b(5(i− j) + `) gk(j) , ` = 0, 1, . . . , 4 , k ≥ 0 . (5.15)

In Figure 6 the limit curves obtained by the algorithm (5.15) are displayed for
different values of the parameters c(0) and c(1).
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Figure 6: The limit curves obtained by the 3-point subdivision schemes (5.15) for different
values of the parameters c(0) and c(1). The control polygon (red line) and the control points
(red circles) are also displayed.
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