Boson sampling represents a promising approach to obtain evidence of the supremacy of quantum systems as a resource for the solution of computational problems. The classical hardness of Boson Sampling has been related to the so called Permanent-of-Gaussians Conjecture and has been extended to some generalizations such as Scattershot Boson Sampling, approximate and lossy sampling under some reasonable constraints. However, it is still unclear how demanding these techniques are for a quantum experimental sampler. Starting from a state of the art analysis and taking account of the foreseeable practical limitations, we evaluate and discuss the bound for quantum supremacy for different recently proposed approaches, accordingly to today's best known classical simulators.
Towards quantum supremacy with lossy scattershot boson sampling / Latmiral, Ludovico; Spagnolo, Nicolo'; Sciarrino, Fabio. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - STAMPA. - 18:11(2016), p. 113008. [10.1088/1367-2630/18/11/113008]
Towards quantum supremacy with lossy scattershot boson sampling
SPAGNOLO, NICOLO';SCIARRINO, Fabio
2016
Abstract
Boson sampling represents a promising approach to obtain evidence of the supremacy of quantum systems as a resource for the solution of computational problems. The classical hardness of Boson Sampling has been related to the so called Permanent-of-Gaussians Conjecture and has been extended to some generalizations such as Scattershot Boson Sampling, approximate and lossy sampling under some reasonable constraints. However, it is still unclear how demanding these techniques are for a quantum experimental sampler. Starting from a state of the art analysis and taking account of the foreseeable practical limitations, we evaluate and discuss the bound for quantum supremacy for different recently proposed approaches, accordingly to today's best known classical simulators.File | Dimensione | Formato | |
---|---|---|---|
Latmiral_Towards_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.