We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t → ∞ limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the sin- gular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q-tensors cannot be stable critical points of the LdG energy in this limit.

Uniaxial versus biaxial character of nematic equilibria in three dimensions / Henao, Duvan; Majumdar, Apala; Pisante, Adriano. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:2(2017). [10.1007/s00526-017-1142-8]

Uniaxial versus biaxial character of nematic equilibria in three dimensions

PISANTE, Adriano
2017

Abstract

We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t → ∞ limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the sin- gular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q-tensors cannot be stable critical points of the LdG energy in this limit.
2017
analysis; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Uniaxial versus biaxial character of nematic equilibria in three dimensions / Henao, Duvan; Majumdar, Apala; Pisante, Adriano. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:2(2017). [10.1007/s00526-017-1142-8]
File allegati a questo prodotto
File Dimensione Formato  
Henao_Uniaxial-versus-biaxial_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 943.72 kB
Formato Adobe PDF
943.72 kB Adobe PDF   Contatta l'autore
Henao_preprint_Uniaxial-versus-biaxial_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 440.48 kB
Formato Unknown
440.48 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/954196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact