We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t → ∞ limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the sin- gular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q-tensors cannot be stable critical points of the LdG energy in this limit.
Uniaxial versus biaxial character of nematic equilibria in three dimensions / Henao, Duvan; Majumdar, Apala; Pisante, Adriano. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:2(2017). [10.1007/s00526-017-1142-8]
Uniaxial versus biaxial character of nematic equilibria in three dimensions
PISANTE, Adriano
2017
Abstract
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t → ∞ limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the sin- gular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q-tensors cannot be stable critical points of the LdG energy in this limit.File | Dimensione | Formato | |
---|---|---|---|
Henao_Uniaxial-versus-biaxial_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
943.72 kB
Formato
Adobe PDF
|
943.72 kB | Adobe PDF | Contatta l'autore |
Henao_preprint_Uniaxial-versus-biaxial_2017.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
440.48 kB
Formato
Unknown
|
440.48 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.