We study the limiting distribution of critical points and extrema of random spherical harmonics, in the high energy limit. In particular, we first derive the density functions of extrema and saddles; we then provide analytic expressions for the variances and we show that the empirical measures in the high-energy limits converge weakly to their expected values. Our arguments require a careful investigation of the validity of the Kac-Rice formula in nonstandard circumstances, entailing degeneracies of covariance matrices for first and second derivatives of the processes being analyzed.
On the Distribution of the Critical Values of Random Spherical Harmonics / Cammarota, Valentina; Marinucci, Domenico; Wigman, Igor. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 26:4(2016), pp. 3252-3324. [10.1007/s12220-015-9668-5]
On the Distribution of the Critical Values of Random Spherical Harmonics
CAMMAROTA, VALENTINA;MARINUCCI, Domenico
;
2016
Abstract
We study the limiting distribution of critical points and extrema of random spherical harmonics, in the high energy limit. In particular, we first derive the density functions of extrema and saddles; we then provide analytic expressions for the variances and we show that the empirical measures in the high-energy limits converge weakly to their expected values. Our arguments require a careful investigation of the validity of the Kac-Rice formula in nonstandard circumstances, entailing degeneracies of covariance matrices for first and second derivatives of the processes being analyzed.File | Dimensione | Formato | |
---|---|---|---|
Cammarota_Distribution_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
588.83 kB
Formato
Adobe PDF
|
588.83 kB | Adobe PDF | |
Cammarota_Distribution-of the-Critical_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
830.01 kB
Formato
Adobe PDF
|
830.01 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.