An iteratively reweighted approach for robust clustering is presented in this work. The method is initialized with a very robust clustering partition based on an high trimming level. The initial partition is then refined to reduce the number of wrongly discarded observations and substantially increase efficiency. Simulation studies and real data examples indicate that the final clustering solution has both good properties in terms of robustness and efficiency, and naturally adapts to the true underlying contamination level.

A reweighting approach to robust clustering / Dotto, Francesco; Farcomeni, Alessio; García Escudero, Luis Angel; Mayo Iscar, Agustín. - In: STATISTICS AND COMPUTING. - ISSN 0960-3174. - ELETTRONICO. - 28:2(2017). [10.1007/s11222-017-9742-x]

A reweighting approach to robust clustering

DOTTO, FRANCESCO;FARCOMENI, Alessio
;
2017

Abstract

An iteratively reweighted approach for robust clustering is presented in this work. The method is initialized with a very robust clustering partition based on an high trimming level. The initial partition is then refined to reduce the number of wrongly discarded observations and substantially increase efficiency. Simulation studies and real data examples indicate that the final clustering solution has both good properties in terms of robustness and efficiency, and naturally adapts to the true underlying contamination level.
2017
cluster analysis; minimum covariance determinant estimator; robustness; trimming; theoretical computer science; statistics and probability; statistics, probability and uncertainty; computational theory and mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
A reweighting approach to robust clustering / Dotto, Francesco; Farcomeni, Alessio; García Escudero, Luis Angel; Mayo Iscar, Agustín. - In: STATISTICS AND COMPUTING. - ISSN 0960-3174. - ELETTRONICO. - 28:2(2017). [10.1007/s11222-017-9742-x]
File allegati a questo prodotto
File Dimensione Formato  
Dotto_Reweighting-Approach_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/953913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact