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Piazzale Aldo Moro, 5. 00185 Rome, Italy. E-mail: alessio.farcomeni@uniroma1.it

Luis Angel Garćıa-Escudero
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1 Introduction

Trimming approaches in statistics provide robustness by considering outlier-
free subsamples extracted from the data. Observations outside these subsam-
ples are discarded. Examples include the Minimum Volume Ellipsoid, the
Minimum Covariance Determinant, the Forward Search. See, e.g., Rousseeuw
(1985); Rousseeuw and van Driessen (1999); Butler et al. (1993); Riani et al.
(2009); Hennig (2005); Cerioli et al. (2014) and Coretto and Hennig (2016).

The loss in fixing a trimming level α is not symmetric: if it is too low,
outliers can completely spoil the solution. If it is too high, a loss of efficiency
(which is usually less problematic than the first scenario) is incurred. For this
reason, a preventive (higher than needed) trimming level is often considered.
This could result in a high number of non-outlying observations which are
wrongly trimmed, and loss of efficiency in subsequent statistical analyses. Care-
fully tuning the trimming level may be cumbersome in several applications,
and the final results may be dependent on a subjective choice of this tuning
parameter. A popular solution in robust statistics is to resort to reweighting
methodologies.

To fix ideas, we start reviewing an example of the use of this approach
in the simpler framework of multivariate robust location and scatter matrix
estimation. Given a sample tx1, ..., xnu Ă R

p and T and S being any robust
location and scatter estimators for this sample, robust Mahalanobis distances
are defined as

di “ dSpxi, T q “
a

pxi ´ T q1S´1pxi ´ T q

for i “ 1, ..., n. For instance, Rousseeuw and Leroy (1987) proposed consid-
ering T as the center of the ellipsoid with the smallest volume (MVE) that
contains a fraction 1´ α0 of the observations (a high trimming level α0 » 0.5
was indeed proposed) and S as the scatter matrix determined by the same
ellipsoid and multiplied by a correction factor to be consistent at multivariate
Gaussian distributions. Alternatively, estimators T and S based on MCD esti-
mation can be also used (defined from the fraction 1´α0 of observations whose
sample covariance matrix has the smallest possible determinant). Reweighting
of each observation xi is usually based on the Mahalanobis distance through
wi “ vpdiq, with vp¨q being a non-increasing function. The weights wi allow us
to compute (one-step) reweighed location and scatter estimators which have
good robustness performance and better efficiency behavior just by consid-
ering weighted sample means and weighted sample covariances. See Lopuhaa
(1999) for a detailed discussion on the properties of reweighted estimators.
The approach could be then iterated (e.g., Cerioli 2010).

A very simple and widely applied approach is to use binary weights. Given
initial T and S (robust) location and scatter matrices estimators and their
associated Mahalanobis distances di “ dSpxi, T q, we can simply use

wi “ 1 if di ď
b

χ2
p,αL

and wi “ 0 otherwise. (1)
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We use the notation χ2
p,β for a 1´ β quantile of the χ2

p distribution and αL is
taken as a positive value close to 0. This allows to recover some of the wrongly
trimmed observations, which could have not been taken into account when
computing T and S, by assuming a normal distribution for the non-outlying
part of data.

In this work we are focused on robust clustering. There are several ap-
proaches to robust clustering that are based on trimming (see, e.g., Cuesta-
Albertos et al. 1997, Hennig 2005, Gallegos and Ritter 2005, Neykov et al.
2007, Garćıa-Escudero et al. 2008, Coretto and Hennig 2016 and other ref-
erences included in Garćıa-Escudero et al. 2010). For a detailed review, see
Farcomeni and Greco (2015) and Ritter (2014). Robust clustering methods
based on trimming return a fraction 1´ α0 of outlier-free observations which
are assigned to the different clusters. A high number of wrongly trimmed obser-
vations (due to the consideration of high initial preventive α0 trimming levels)
could be a major problem as researchers usually would like to assign as many
observations as possible to a cluster. Failure to assign a clean observation to a
cluster might be associated with practical consequences. For instance in mar-
keting research not assigning a potential buyer to a his/her appropriate cluster
is associated to loss of the revenue associated with the future transaction. Our
proposal is to use reweighting ideas to reduce as much as possible, in a data
driven fashion, the trimming proportion in robust clustering applications.

The proposed methodology is initialized with a large trimming level α0

which -hopefully- guarantees the detection of a proportion 1´α0 of outlier-free
observations in the most central regions of each cluster. These observations can
be seen as the cores of the clusters. Starting from the cores, the initial (high)
trimming level α0 is repeatedly decreased by including wrongly trimmed obser-
vations which are close to these cores, and updating estimates. In this iterative
process better estimates of the cluster scatter matrices, cluster proportions,
and the contamination level are consecutively obtained. Providing efficient es-
timates of these parameters is helpful to detect the outliers and, consequently,
avoid their insertion in the final set of the clustered data eventually stopped
prior to reaching the small trimming levels that would include outliers in es-
timation sets. Our proposal, to be better detailed below, can be seen as an
extension of the procedure presented in Garćıa-Escudero and Gordaliza (2007)
where the final trimming level had to be determined manually.

Figure 1 shows the result of applying the proposed methodology to two
simulated datasets. The first one shown in panel (a.1) is the result of simulating
a mixture of two normal components with no contamination. In panel (b.1)
10% of the observations are replaced by outlying data points. A more detailed
description of the simulation scheme will be given in Section 4. Panels (a.2)
and (b.2) show the results of TCLUST (Garćıa-Escudero et al., 2008) with
α0 “ 0.33 trimming. Several wrongly trimmed observations can be seen, but
also that the TCLUST procedure successfully identifies cluster cores. Finally,
panels (a.3) and (b.3) show the results of the proposed methodology, which
we name RTCLUST, which in both cases adapts well to the true underlying
contamination.
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Fig. 1 Two simulated data sets with their true assignments in (a.1) and (b.1). The result of
TCLUST with α0 “ 0.33 in (a.2) and (b.2). The final assignments obtained after applying
the proposed methodology are given in (a.3) and (b.3). Noisy data and trimmed are denoted
by ˝ in all graphs throughout the manuscript.

In the previous example, we applied TCLUST (Garćıa-Escudero et al.,
2008) as the initial robust clustering technique to initialize the proposed method-
ology. TCLUST is a robust clustering method whose performance depends on
three input parameters: the number of clusters k, the trimming proportion
α, and a constraint on the maximal ratio of eigenvalues of scatter matrices c.
The latter will be discussed in more detail below, and is used to guard against
the occurrence of spurious solutions (e.g., clusters with zero or infinite vari-
ance in some direction). It shall be underlined that the proposed reweighting
methodology can be initialized from any other robust clustering method.

The underlying idea is that using an initial very robust estimator would
make the procedure be resistant to a very high proportion of outliers (i.e., have
a breakdown point close to α0). On the other hand, iteratively decreasing the
trimming level would make the procedure almost as efficient as the non-robust
counterparts. A similar idea but with a different rationale was proposed in
Hardin and Rocke (2004), where an initial solution is improved based on a
scaled F approximation to the distribution of Mahalanobis distances (see also
Hardin and Rocke 2005). We will compare in simulations below.
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It is important to stress that while we will estimate the contamination level,
and evaluate masking and swamping, what we are proposing is not a method
to simultaneously perform robust clustering and outlier detection. We aim at
obtaining robust and efficient estimates of partitions and model parameters.
Outlier detection should then be based on robust estimators, but should be
performed separately based on formal rules (see, e.g., Cerioli and Farcomeni
2011 for a general discussion on this point).

The outline of the paper is as follows. The proposed methodology is pre-
sented in Section 2 together with some illustrative examples and guidelines
about its practical use. Some theoretical results are stated in Section 3, with
proofs given in the online supplementary material. A simulation study is given
in Section 4, with additional studies given in the online supplementary mate-
rial. Examples on a benchmark data set and on an original study on exploring
the status of food security in the world are given in Section 5. Finally, Section
6 gives concluding remarks.

2 Methodology

2.1 Proposed algorithm

Let us assume that the number of clusters k is known in advance but the pro-
portion of observations in each cluster is unknown and the true contamination
level is also unknown. We assume that non-outlying observations come from
a mixture of k normally distributed components, and contamination might be
present in our data. We also loosely make the assumption that the components
are not too much overlapped.

We consider a sequence of decreasing trimming levels α0 ą α1 ą ... ą αL
with α0 being an initial preventive (i.e., surely higher than needed) trimming
level and αL is a value close to 0 that can be interpreted in a similar fashion
as parameter αL in (1). Let us denote πl1, ..., π

l
k the estimates of the cluster

proportions and πlk`1 the proportion of contamination, for each trimming level
αl, with

k`1
ÿ

j“1

πlj “ 1.

The center and scatter matrices estimates in the iteration l are denoted by
µl1, ..., µ

l
k and Σl

1, ..., Σ
l
k.

By using this notation, the proposed methodology is described as follows:

1. Initialization: A very robust clustering is used to initialize, obtaining initial
π0
1 , ..., π

0
k, π

0
k`1, µ0

1, ..., µ
0
k and Σ0

1 , ..., Σ
0
k. We propose considering TCLUST

with a high trimming level α0 as initializing method. Let fp¨;µ,Σq denote
the p.d.f. of the p-variate normal distribution. TCLUST is based on the
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double maximization of

k
ÿ

j“1

ÿ

iPHj

logpπjfpxi;µj , Σjqq (2)

with respect to parameters (µj P R
p, Σj p.s.d. matrices and

řk
j“1 πj “ 1)

and possible partition H0 Y H1 Y ... Y Hk of tx1, ..., xnu, with #H1 `

... ` #Hk “ rnp1 ´ α0qs. A proportion α0 of data is discarded in (2).
Maximization of (2) is not a well-defined mathematical problem unless
spurious solutions are avoided through constraints. Therefore, we use a
constraint on the estimated scatter matrices as

maxj“1,...,k maxh“1,...,p λhpΣjq

minj“1,...,k minh“1,...,p λhpΣjq
ď c (3)

where tλjpΣqu
p
j“1 is the set of eigenvalues of matrix Σ and c is a fixed

positive constant such that c ě 1. We propose using a small c value to
prevent us from detecting “spurious” clusters in this initializing step. For
any α0 and c, the optimal parameters solving the constrained maximization
are considered as the initial π0

1 , ..., π
0
k, µ0

1, ..., µ
0
k and Σ0

1 , ..., Σ
0
k parameters.

Given that we are only considering the core of the clusters, it is not possible
to obtain a reliable estimation of the contamination level and, thus, we
prefer just initializing π0

k`1 “ 0.
Once again, we point out that other possible robust clustering methods can
be applied for this initializing step. For instance, methods derived from the
maximization of (2) with different constraints on the Σj matrices and/or
removing the πj weights can be used. See Cuesta-Albertos et al. (1997),
Hennig (2005), Gallegos and Ritter (2005), Coretto and Hennig (2016) or
Neykov et al. (2007) among others. If πj weights are not available then we
may consider π0

1 “ ... “ π0
k “ 1{k to initialize the procedure.

2. Reweighting process: Consider αl “ α0 ´ l ¨ ε with ε “ pα0 ´ αLq{L for
l “ 1, ..., L

2.1 Update proportions: Given πl´1
1 , ..., πl´1

k , πl´1
k`1, µl´1

1 , ..., µl´1
k and Σl´1

1 ,

...,Σl´1
k from the previous step, let us consider

Di “ min
1ďjďk

d2
Σl´1

j

pxi, µ
l´1
j q (4)

and sort these values as Dp1q ď ... ď Dpnq. Take the sets

A “ txi : Di ď Dprnp1´αlqsqu and B “ txi : Di ď χ2
p,αL

u

(note that αL is used to define the set B). Now, use the distances in
(4) to obtain a partition AXB “ tH1, ...,Hku with

Hj “

"

xi P AXB : dΣl´1
j
pxi, µ

l´1
j q “ min

q“1,...,k
dΣl´1

q
pxi, µ

l´1
q q

*

.



Reweighting in robust clustering 7

We estimate, at this stage, the contamination level as

πlk`1 “ 1´
#B

n
.

If nj “ #Hj and n0 “ n1 ` ... ` nk (notice that n0 is not necessarily
equal to rnp1´αlqs) then the proposed estimations at this stage of the
cluster weights are

πlj “
nj
n0

`

1´ πlk`1

˘

. (5)

2.2 Update locations and scatters: We update the cluster centers by taking
µlj equal the sample mean of the observations in Hj . To update the

scatter matrices estimates, we start from Slj , the sample covariance
matrix computed on the observations in Hj .
Then we multiply such estimates by the consistency factor given by cl,
defined as

c´1
l “ η

ˆ

n0
np1´ πlk`1q

˙

if
n0

np1´ πlk`1q
ă 1,

where ηpβq “ P
`

χ2
p`2 ď χ2

p,βj

˘

{β, and

cl “ 1 if
n0

np1´ πlk`1q
ě 1.

Therefore, the scatter matrices are finally updated as

Σl
j “ Slj ¨ cl.

3. Output of the algorithm: µL1 , ..., µ
L
k and ΣL

1 , ..., Σ
L
k are the final parameters

estimates for the normal components. From them, final assignments are
done by computing

Di “ min
1ďjďk

d2ΣL
j
pxi, µ

L
j q,

for i “ 1, ..., n. Observations assigned to cluster j are those in Hj with

Hj “

"

xi : dΣL
j
pxi, µ

L
j q “ min

q“1,...,k
dΣL

q
pxi, µ

L
q q and Di ď χ2

p,αL

*

and the trimmed observations are observations not assigned to any of these
Hj sets (i.e., those observations with Di ą χ2

p,αL
).

Step 2.1 is targeted at keeping outliers outside AXB, while increasing the
trimming size in a controlled fashion. Alongside, better parameter estimates
are obtained by increasing the active sample size. In the step 2.2 we use the
well-known correction factors (see, e.g. Liu et al., 1999) to inflate the covariance
matrix estimates based on non-trimmed data. These guarantee consistency at
the normal model. components. At each stage the fraction of observations in
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the central region of group j is nj{nπ
l
j “ n0{pnp1 ´ πlk`1qq, where nπlj is an

estimate of the total number of observations in group j.
The proposed RTCLUST procedure is not computationally intensive at all.

The most time-consuming part is computation of the initial estimates, which
is done only once.

Remark 1 More sophisticated rules for discarding outliers, for instance, based
on using the Beta distribution or multiple testing corrections could have been
tried (Cerioli, 2010; Cerioli and Farcomeni, 2011). However, for sake of clarity
of presentation, we have preferred the simpler use of a rule just based on χ2

p,αL
.

There is still room for improvement regarding better detection of outlying
observations.

Remark 2 Sometimes, we could be interested in forcing some “a priori” con-
straints like those in (3) to the final estimated clusters scatter matrices. In this
case, constraints can be forced by truncating the scatter matrices eigenvalues
in the updating step 2.2 as done in Fritz et al. (2013).

Finally, it is also important to note that reweighting is just aimed at
refining robust partitions that initialize the method. If the initial partition
contains outlying observations or the clusters are not correctly identified (e.g.
a whole cluster is wrongly trimmed), then, as expected, RTCLUST might fail.

2.2 Illustrative examples

The two component normal mixture shown in panels (b.1) of Figure 1 ac-
count for 36% and 54% of the observations, respectively, while a 10% of not
“very overlapped” contamination is added. The scatter matrix for the first
component is Σ1 equal to the identity matrix and Σ2 is a scatter matrix with
|Σ2| “ 20 and eigenvalues equal to 11.708 and 1.708. This means that the
“true” eigenvalue ratio for these two scatter matrices is equal to 11.708. A
more detailed description of the process generating this data set will be given
in Section 4. We will use this data set in order to illustrate the lack of de-
pendence of the final solution on the initializing trimming level α0 and on the
initial value of the restriction factor c when TCLUST is used as initializing
procedure. Figure 2 shows the evolution of the determinants of the scatter ma-
trices, i.e. t|Σl

j |u
L
l“0 for j “ 1, 2 in panel (a), and the evolution of the estimated

contamination level and estimated cluster sizes, i.e. tπlju
L
l“0 for j “ 0, 1, 2 in

(b). These evolutions are studied for different values of α0 “ 0.3, 0.25, 0.2 and
0.15 and it is always considered the same (wrong) eigenvalue ratio constraint
value c “ 5 for the TCLUST method as initializing procedure. We can see
that the final output is not very dependent on the initializing trimming level
and that the output estimated parameters are very close to the true ones we
want to estimate (i.e., |Σ1| “ 1 and |Σ2| “ 20 for the cluster scatter matrices
determinants and π0 “ 0.1, π1 “ 0.36 and π2 “ 0.54 for the contamination
level and cluster sizes).
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Fig. 2 Evolution of |Σl
j | in (a) and of πl

j in (b) for different initial α0 values (α0 “ .3, .25,

.2 and .15) for the data set shown in Figure 1 (b.1). The up-triangle symbols are the true
parameters to be estimated.

Analogously, the same type of study was made to analyze the possible
dependence on the initializing choice of c. The results are shown in Figure 3
where c values equal to 1, 10 and 20 were chosen. Recall that the true eigenvalue
ratio for the considered scatter matrices was exactly equal to 11.708 (which
is not equal to any of the c initializing values tried). We can see again that
the obtained results are accurate and that they are not very dependent on the
initial c value.

It is also important to note, in Figure 2 and Figure 3, that no great changes
are noticeable in the estimated parameters when the procedure approximately
reaches the true contamination level. This is because, we count on quite ac-
curate estimators of the parameters of the normal distributions components
throughout µlj and Σl

j when αl « 0.1. Therefore, the set AXB defined in Step
2.1 remains essentially the same and equal to the set having all the regular
(non-noisy) observations already included. On the other hand, one-step pro-
cedures only take into account the information from truncated sub-samples
corresponding to central regions in the normal components. From this central
regions, it is not so easy to have very accurate parameters estimations for the
normal components parameters.

To reinforce our previous claims, we will illustrate the advantages of the
proposed iterative trimming procedure with respect to one-step reweighting
approaches even in the k “ 1 case. When k “ 1, the reweighted MCD is
clearly one of the most popular robust location and scatter estimator. After
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Fig. 3 Evolution of |Σl
j | in (a) and of πl

j in (b) for different initial c values (c “ 1, 10 and 20

while the true c needed was 11.71) for the data set shown in Figure 1 (b.1). The up-triangle
symbols are the true parameters to be estimated.

considering an initial large trimming level α0, reweighting is done to increase
efficiency as described in Section 1.

Figure 4 is based in a simulated data set of size n “ 1000 generated from
a bivariate normal distribution accounting for 73% of the data (the bulk of
data), a 24% amount of pointwise contamination placed at p4, 8q (labeled with
an “arrow” symbol) and 3% of background contamination. Figure 4,(b) shows
the result of applying the reweighted MCD approach in Section 1 by using
the robustbase package in R available in the CRAN repository with the de-
fault initial trimming level α0 » 0.5 and αL “ 0.01 and the function “tolEl-
lipsePlot” (from robustbase) to plot the 0.99 tolerance ellipses (the classical
and the MCD-based robust ones). Despite there exists a “good” initial sub-
population including more than half of the observations, the final estimation
is very distorted by the added pointwise contamination as can be seen in 4,(b).
On the other hand, Figure 4,(a) shows how the proposed iterative trimming
resists very well this pointwise contamination.

Finally, an additional important parameter for the proposed methodology
is αL. In all the shown illustrative examples, the same αL “ 0.01 has been
taken. The αL parameter has to do with the quantile in the χ2

p distribution and
it plays the same role as in all analogous reweighting methods. For instance,
αL “ 0.01 means that around 1% of the observations are wrongly discarded
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Fig. 4 (a) The proposed iterative reweighting procedure when k “ 1 started from α0 “ 0
and αL “ 0.01 (b) The (traditional) reweighted MCD started from α0 “ 0 and αL “ 0.01.

when we have normal components without contamination. The smaller the αL
the lesser is the number of proportion of wrongly trimmed observations but
higher is the risk of incorporating near outlying observations.

3 Theoretical results

The algorithm proposed in the previous section admits a population counter-
part for a theoretical underlying probability P . Let us denote by

θ0P “ pπ
0
1P , . . . , π

0
kP , 0, µ

0
1P , . . . , µ

0
kP , Σ

0
1P , . . . , Σ

0
kP q

the population parameters obtained when applying the TCLUST methodology
to distribution P , for fixed α0 and c. This TCLUST solution does exist under
very mild assumptions (see Proposition 2 in Garćıa-Escudero et al. 2008). Note

also that we are setting π0
k`1P “ 0 and

řk
j“1 π

j
1P “ 1 given that we do not

dispose of reliable estimators for the contamination level at this initial l “ 0
stage. In a similar fashion, we use the notation

θlP “ pπ
l
1P , . . . , π

l
kP , π

l
k`1P , µ

l
1P , . . . , µ

l
kP , Σ

l
1P , . . . , Σ

l
kP q
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for the population values of the parameters obtained after applying l steps of
the proposed algorithm for a fixed underlying distribution P . A more formal
definition of these population θlP parameters is given in the online supplemen-
tary material.

Let tx1, ..., xnu be a realization of an independent identically distributed
sample from distribution P and let Pn denote its associated empirical measure.
Additionally, let θlPn

be the set of parameters obtained in the l-th step of the
algorithm presented in Section 2.1.

Next result shows that the parameters are bounded when considering a
finite number of steps L under mild assumptions on P . In Theorem 1, the
assumption concerning the non-coincidence of population centers at any itera-
tion serves to exclude certain pathological cases that could occur in clustering
problems. The proof of the results in this section are provided in the online
supplementary material.

Theorem 1 Assume P is an absolutely continuous distribution with a strictly
positive density function. Additionally assume that µlj1P ‰ µlj2P for every
j1 ‰ j2 and every l “ 0, 1, ..., L. We have that

max
j“1,...,k;l“0,1,...,L

}µljP } ă 8

and

0 ă min
j“1,...,k;l“0,1,...,L;q“1,...,p

λqpΣ
l
jP q ď max

j“1,...,k;l“0,1,...,L;q“1,...,p
λqpΣ

l
jP q ă 8

where tλqpSqu
p
q“1 is the set of eigenvalues of matrix S.

As shown in the online supplementary material, the proof of the previous
result relies on the fact that the optimal set (i.e., the set including all the
non-trimmed regions in Rp) can be represented as a union of k ellipsoids with
non-null P probability mass.

The following result is based on the same assumptions as Theorem 1, but
notice that these assumptions only concern the underlying distribution P .

Theorem 2 Under the same assumptions of Theorem 1, we have that there
exists a compact set K and n0 P N such that θlPn

P K for n ą n0 with
probability 1.

Now, we can state a consistency result for the parameters obtained from
random samples of size n toward those obtained from the population problem.

Theorem 3 Under the same assumptions of Theorem 1, we have

θlPn
Ñ θlP , P -almost surely,

for every l “ 0, 1, ..., L.
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Another important issue is to verify if this reweighting approach is able to
retain the robustness properties of the TCLUST initializing method. In order
to do that, we resort to the “addition r-components” breakdown-point (BP)
notion, as given in Cuesta-Albertos et al. (2008). This notion is a multivariate
adaptation of a univariate proposal by Hennig (2004). It is easy to see that
classical BP notions in clustering are sample-dependent and, then, they cannot
be directly applied. The considered BP notion is based on the assumption that
measuring the BP of a clustering procedure should require a “well clustered”
data set prior to contamination. With this idea in mind, a sequence of data
sets composed by groups with bounded “intra-group” variability and with
“between-groups” distance going to infinity are considered for studying the
change in the estimated parameters caused by the addition of r outliers. To
be more precise, let tn1, ..., nku Ă N be k fixed cluster sizes with n1 ` ... `
nk “ n and nj ą 1 for j “ 1, ..., k. Let us consider a sequence of sets Xm “

tx1,m, ..., xn,mu Ă R
p such that Xm “ Ykj“1X j

m with

X j
m “ txn1`...`nj´1`1,m, ..., xn1`...`nj ,mu.

As in Hennig (2004) and Cuesta-Albertos et al. (2008), we refer to tXmum as
an ideal array of well (k-)clustered data sets whenever

max
j“1,...,k

maxt}xi1,m ´ xi2,m}
2 : xi1,m, xi2,m P X j

mu ă a, (6)

and

mint}xi1,m ´ xi2,m}
2 : xi1,m P X j1

m , xi2,m P X j2
m for j1 ‰ j2u ě bm, (7)

for a given constant a ă 8 and a sequence bm Ñ 8. Additionally let us
assume that

lim inf
m

mint}xi1,m ´ xi2,m}
2 : xi1,m, xi2,m P Xm for i1 ‰ i2u ě a1 ą 0, (8)

which means that a pair of observations can not be arbitrarily joined together
in this ideal array as mÑ8.

Finally let Ym “ ty1,m, ..., yr,mu Ă R
p be a sequence of r outliers, well

separated from the “good” part of the data and whose inter-point separations
diverge. Formally:

mint}yi2,m ´ xi1,m}
2 : xi1,m P Xm, yi2,m P Ymu ě cm, (9)

and

mint}yi1,m ´ yi2,m}
2 : yi1,m, yi2,m P Ym for i1 ‰ i2u ě dm, (10)

for two sequences of real numbers satisfying cm, dm Ñ8.
First we state a result related with the BP property for the TCLUST under

the aforementioned “ideal” setting.
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Theorem 4 Let Xm “ tx1,m, ..., xn,mu “ Ykj“1X j
m a sequence of datasets

with #X j
m “ nj ą 1 satisfying conditions (6), (7) and (8) for a ă 8, a1 ą 0

and bm Ñ8. Additionally, let Ym “ ty1,m, ..., yr,mu be a sequence of r outliers
added satisfying conditions (9) and (10) as cm, dm Ñ8. If

α0 ě
r

n` r
and α0 ď

r `minj“1,...,k nj ´ 2

n` r

and Rm “ Ykj“1Rj
m Ă Xm Y Ym is the set containing the non-trimmed ob-

servations and the labels of the k clusters obtained by applying TCLUST to
tXm Y Ymu with a trimming level equal to α0 and c ě 1, then there exist
m0 P N such that for every m ě m0

Rm Ă Xm (11)

and, also, there exists a relabeling of the j indexes such that

Rj
m Ă X j

m for j “ 1, ..., k. (12)

In other words, outlying points from Ym are not included in the cluster parti-
tions obtained by TCLUST.

Under this ideal setting, it is not difficult to see that this property can be
extended to RTCLUST.

Corollary 1 Given Xm and Ym as in Theorem 4, and apply RTCLUST ini-
tialized from TCLUST with a trimming level α0 as that in Theorem 4 and
c ě 1. Let Hl

m “ Ykj“1Hj,l
m Ă Xm Y Ym be the set with the observations non

discarded in the l-th iteration, l “ 0, 1, ..., L. Then

Hl
m Ă Xm for l “ 0, 1, ...L,

and, also, there exists a relabeling of the j indexes such that

Hj,l
m Ă X j

m for j “ 1, ..., k and l “ 0, 1, ...L.

This corollary can be shown through an inductive reasoning on l based on
Theorem 4, taking into account that, at each reweighting step, observations
with Mahalanobis distances larger than a fixed constant χ2

p,αL
ă 8 cannot be

included in the updating step. Additionally, assumption (9) still holds.
It is important to note that, even under this “ideal” clustering setting (well

clustered data set with well separated outliers), Hennig (2004) proves that the
maximum likelihood estimator of a normal mixture model breaks down even
with the addition of one single (r “ 1) outlier. The same happens with other
robust proposals like maximum likelihood estimators of t-mixture models or
the addition, to the normal mixture model, of a uniformly distributed com-
ponent in the convex hull defined by the data. Moreover, it is not difficult to
see that this bad performance in terms of BP behavior cannot be solved even
including the additional assumption (8). Interesting results and discussions
concerning the BP in clustering under “ideal” well clustered data sets can be
seen in Hennig (2008).
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Theorem 4 can be translated into BP properties for the estimated param-
eters. Parameters do not breakdown if those resulting from Xm Y Ym cannot
be taken arbitrarily far away than those resulting from Xm. However, it could
happen that, even without catching observations from Ym, any of the Hj,l

m sets
could eventually vanish as l increases. A possibility to overcome this trouble
is to stop the iterative process whenever there exists a j such #tHj,l

m XRj
mu

becomes smaller than β ˆ#Rj
m for a constant β P p0, 1q fixed in advance.

4 Simulation study

We now study the performance of the previously described procedure when
applied to several (contaminated) mixtures of Gaussian distributions.

The non-outlying part of the dataset comes from a mixture of two p-
variate normal distributions π1Npµ1, Σ1q ` π2Npµ2, Σ2q with centers µ1 “

p0, 0, 0, ..., 0q1 and µ2 “ p8, 0, ..., 0q
1 and covariance matrices

Σ1 “ Ip and Σ2 “
p
?
λ

¨

˚

˚

˚

˚

˚

˝

1 1 1 1 ¨ ¨ ¨ 1
1 2 2 2 ¨ ¨ ¨ 2
1 2 3 3 ¨ ¨ ¨ 3
...

...
...

...
. . .

...
1 2 3 4 ¨ ¨ ¨ p

˛

‹

‹

‹

‹

‹

‚

.

This means that |Σ1| “ 1 and |Σ2| “ λ. A proportion ε of contaminating
observations are added as described later.

We generate data sets of size n “ 1000 under all possible combinations of
the following scenarios:

– Three data dimensions: p “ 2, 4 and 6
– Three contamination levels ε “ 0.10, 0.05, and 0.
– Two scales λ “ 1 and 5
– Balanced clusters πj “ 0.5 for j “ 1, 2; moderately unbalanced clusters

with proportions π1 “ 0.4 and π2 “ 0.6 and highly unbalanced clusters
with proportions π1 “ 0.25 and π2 “ 0.75. It shall be noticed in case of
high unbalancedness between clusters, the initial trimming level α0 is, in
some cases, higher than the smallest cluster proportion.

– Two types of contamination: a symmetric one obtained sampling from a
uniform distribution in the hypercube defined by the range of the non-
contaminated part of the data and an asymmetric one obtained by sam-
pling from a uniform distribution defined on r0, 12sˆr´7,´2sˆr´2, 2sp´2.
Outlying observations are generated uniformly within these hypercubes,
but outliers with squared Mahalanobis distances from µ1 and µ2 (using Σ1

and Σ2) smaller than χ2
p,ν are discarded. The operation is repeated until

the desired proportion of ε outliers have been obtained. The parameter ν
controls how far away contaminated data points are.

– Two ν values, ν “ 0.01 and ν “ 0.001.
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The case ε “ 0 is used to evaluate efficiency of the proposed methodology
when applied to clean data.

Regarding the illustrative examples in Figure 1 we generated two datasets
once from a bivariate normal distribution, fixing λ “ 20, π1 “ 0.4 π2 “ 0.6,
with symmetric contamination and ν “ 0.01. A contamination level ε “ 0 was
used in (a.1) and ε “ 0.10 in (b.1).

We compare the performance of the following robust clustering proposals:

– rtclust33 and rtclust20: The proposed iterative reweighting approach
started from TCLUST with initial trimming levels α0 “ 0.33 and α0 “ 0.2

– HR33 and HR20: a one-step version of the procedure by Hardin and Rocke
(2004) started from TCLUST with initial trimming levels α0 “ 0.33 and
α0 “ 0.2

– HR-it33 and HR-it20: the iterated and adapted version of Hardin and
Rocke (2004) started from TCLUST with initial trimming levels α0 “ 0.33
and α0 “ 0.2

– tclust33, tclust20, tclust10 and tclust05: TCLUST with fixed trim-
ming levels α0 “ 0.33, 0.2, 0.1 and 0.05

The same value αL “ 0.01 was used for RTCLUST and Hardin and Rocke’s
methods. For iterative procedures we fixed L “ 20. The TCLUST procedure
was included with trimming levels which could be larger than or equal to the
correct contamination level. The same eigenvalue restriction factor c “ 12 is
always applied when using TCLUST (in the initialization of RTCLUST and
in the direct application of TCLUST with fixed trimming levels). Note that
c “ 12 (which is the default value in the tclust package) could be smaller or
larger than the true eigenvalue ratio, depending on p and λ.

The Hardin and Rocke’s methods are clustering algorithms based on the
MCD philosophy. These methods are going to be initialized in this simula-
tion study with exactly the same TCLUST robust clustering initial solution
used for RTCLUST. Indeed Hardin and Rocke (2004) commented in their
work that “any” robust clustering solution can be used and we have seen that
TCLUST always provides quite sensible initial solutions for all the considered
data sets in the simulation study. In fact, we have seen that TCLUST always
removes all noisy observations (together with others wrongly trimmed ones)
with these high trimming levels (α0 “ 0.33 and 0.2). Let µ0

1, ..., µ
0
k, Σ0

1 , ..., Σ
0
k

and H0
0 , H

0
1 , ...,H

0
k be the solution obtained by applying the TCLUST method.

The Hardin and Rocke’s approach proposes cut-off values to declare outliers
based on the approximation

kjpmj ´ p` 1q

pmj
d2Σ0

j
pxi, µ

0
j q „ Fp,mj´p`1, (13)

where kj “ ηpβjq is a correction factor (as that used in Section 2.1) with

βj “ h̃j{nj for h̃j “ #H0
j and

nj “ #
 

xi : dΣl
j
pxi,m

l
jq “ min

q“1,...,k
dΣl

q
pxi,m

l
qq
(

,
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and where mj is the approximated degrees of freedom for the associated
Wishart distribution (see details in Hardin and Rocke 2004, and Hardin and
Rocke 2005). “HR33” and “HR20” apply directly the cut-off values in (13) to
the observations in the H0

j sets while “HR-it33” and “HR-it20” refine these

H0
j sets until stabilization by applying the iterative steps described in Section

3.3 of Hardin and Rocke (2004).
For all the 96 different data scenarios, we generated the data 500 times

and evaluated the performance of the methods in terms of:

– Mean Square Error for estimation of the mean vectors µ1 and µ2, indicated
in the plot with MSEµ.

– Mean Square Errors associated to the logarithm of the eigenvalue ratio,
indicated in the plots with MSEΣ . We decided to report the error associ-
ated to this quantity since this ratio is forced in the initialization step to
be smaller than a fixed constant c “ 12 to avoid spurious maximizers. Nev-
ertheless, as already commented, this is not necessarily the true eigenvalue
ratio and we want to see how far the final estimated ratio is with respect
the true one given that the proper estimation of the cluster scales play a
key role in the detection of outliers.

– The estimated contamination level ε̂.
– Swamping: the proportion of non-outlying observations that are wrongly

trimmed.
– Masking: the proportion of outliers that are not trimmed.

Figures 5 and 6 summarize the simulation results obtained when ε “ 0.05
and 0.1, respectively. Figures are separated in five row panels, one for each
performance measure, and three column panels, one for each data dimension-
ality p. Given that there are several settings, in order to summarize the results
in a concise way we do not distinguish among them further and just report
the average performance measures all together. Note that some values exceed
the scale of the plots, as identified by “ 4” symbols. We also use “ˆ” symbols
to identify values that are directly fixed by the considered approach.

The iterative reweighing procedure efficiently estimates the mean vector
and the covariance matrix in every data scenario. In all cases we see small
MSE values, and not much variability, meaning that results do not depend
on the simulation setting considered. The MSE values are smaller than those
obtained when applying TCLUST with large trimming values as 0.20 and 0.33.
Moreover, MSE is even slightly better than what obtained with an oracle
TCLUST whose trimming level is exactly equal to the true contamination
level ε. This happens for two reasons. The first is that reweighting can adapt
well to the positioning of the outliers, therefore flexibly trimming more or less
as needed within each replicate. The second is that TCLUST is based on a
sometimes wrong eigenvalue ratio constraint value c “ 12. RTCLUST does
not have further constraints and therefore can exceed this value when needed.

As far as estimation of the contamination level ε̂ is concerned, RTCLUST
provides very stable results in all simulation scenarios, with a systematic slight
overestimation of ε. On the other hand, the procedures based on Hardin and
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Fig. 5 Results when ε “ 0.10. Every procedure is labeled as explained in the text. Values
appearing in the Figure that are fixed in advance (e.g the trimming level for the tclust

method) are plotted with the symbol “ˆ” while when the considered value exceeds the scale
of the plot we used a “Ĳ”

Rocke approach may underestimate contamination levels in a remarkable way.
The swamping proportion is small for all reweighting approaches but mask-
ing proportions can be very high in some scenarios with Hardin and Rocke’s
proposals. Underestimation of the contamination level is clearly more harmful
than overestimation, as outliers included in the estimation set might break
down the estimates. We believe that the problem with the Hardin and Rocke’s
approach is within the correction factor, which exploits an estimator of the
fraction of observations in each cluster which is not reliable with these initial
high trimming levels.

We end this section by comparing the performance of these methods in the
non contaminated ε “ 0 case which is reported in Figure 7.
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Fig. 6 Results when ε “ 0.05. Every procedure is labeled as explained in the text.

We can see that the iteratively reweighting approach exhibits a very good
performance in terms of providing small MSE values. We can also see that the
(non-iterated) Hardin and Rocke’s approaches are very competitive in this non-
contaminated ε “ 0 case. RTCLUST wrongly discards a limited proportion of
observations, about 1%. This is not so surprising as αL “ 0.01 in this section.

5 Real data examples

5.1 Swiss Bank Notes

In this section we apply the proposed iterative reweighting approach to the
6-dimensional “Swiss Bank Notes” data set presented in Flury and Riedwyl
(1988) which describes certain features in 200 printed Swiss 1000-franc bank
notes divided in two groups: 100 genuine and 100 counterfeit notes. This is a
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Fig. 7 Simulation results study under no contamination (ε “ 0).

well known benchmark data set. In Flury and Riedwyl (1988), it is pointed out
that the group of forged bills is not homogeneous since 15 observations arise
from a different pattern and are, for that reason, outliers. Figure 8,(a) shows
a scatterplot of the fourth (“Distance of the inner frame to lower border”)
against the sixth variable (“Length of the diagonal”) with the classification of
bills given in Flury and Riedwyl (1988) by using symbols “G” for the genuine
bills and “F” for the forged ones. The previously commented 15 “anomalous”
forged bills are surrounded by circles in this graph. Figure 8,(b) shows the
results of applying TCLUST with a high trimming level α0 “ 0.33 and c “ 12.
We can see that all these 15 outlying points are successfully discarded and
observations in the “cores” of the genuine and forged bills are correctly found.
However, due to the use of this high trimming level, many observations are also
discarded apart from the 15 clear outliers. We have surrounded these “probably
wrongly” trimmed observations by square symbols. Finally, Figure 8,(c) shows
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the results of applying the proposed iterative trimming approach starting from
the TCLUST’s solution in (b) with αL “ 0.001. We can see that the proportion
of “probably wrongly” trimmed observations reduces to 4 (also surrounded by
square symbols). One of these 4 observations is a genuine bill which clearly
exhibits certain anomalous behavior in these two plotted variables and we
could also see that the other 3 (wrongly) trimmed observations analogously
seems to exhibit slight deviations in some of the (non-plotted) variables.
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Fig. 8 Fourth against the sixth variable of the Swiss Bank Notes data set. (a) G stands for
genuine bills, F for forged ones and 15 bills listed in Flury and Riedwyl (1988) as anomalous
ones are surrounded by “ ˝” symbols. (b) The initial TCLUST solution with α0 “ 0.33 (c)
Final solution when applying the proposed iterative approach. Trimmed observations not
coinciding with those in Flury and Riedwyl’s list are surrounded by “l” symbols in (b) and
(c).

We have used a smaller αL “ 0.001 value in this real data example. If
αL “ 0.01 then 7 wrongly trimmed observations (instead of 4) are obtained.
As stated in the introduction, RTCLUST is not an outlier detection method.
Estimates of the clusters location and scatter matrices do not change notably
with the choice of αL, which makes RTCLUST a good choice for robust clus-
tering and parameters estimation for this data set. Formal rules for outlier
detection could be then based on RTCLUST robustly estimated parameters.

We conclude with an analysis based on k “ 1. As half of the bank notes
are genuine ones, one could think that setting k “ 1 and trimming 50% of
the observations would identify them. Use of TCLUST with k “ 1, α0 “ 0.5
and c “ 12 (i.e., the default value of c fixed in the tclust package) success-
fully identifies 96 genuine bills (out of the 100 non-trimmed observations). The
standard application of RTCLUST, started from this TCLUST solution with
α0 “ .5 and αL “ 0.001, returns a final set with 102 notes which includes 98
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genuine bills. Therefore, RTCLUST is well-suited to discover, in an automa-
tized way, the genuine observations. On the other hand, use of MCD through
the well-known robustbase package with α “ 0.5 returns 103 bills (i.e., the
largest integer less than or equal to pn ` p ` 1q{2 as the “best” subset found
and used for computing the raw estimates. However, surprisingly, only 42 out
of these 103 observations are genuine ones. Additionally, things become even
worse when applying the default consistency correction factor for the covari-
ance matrix estimation and the use of (1) with αL “ 0.025, as this finally leads
to 176 notes used for robust estimation.

5.2 Food Security Data

In this section we apply the proposed procedure to an original and very recent
data set on an investigation of the status of food insecurity in the world in 2014.
Food security is defined by the Committee on World Food Security of United
Nations as when people “ at all times, have physical, social and economic
access to sufficient safe and nutritious food that meets their dietary needs and
food preferences for an active and healthy life ”. For reviews see Godfray et al.
(2010) and Jones et al. (2013).

In 2014, the Gallup Organization conducted a World Poll based on a ques-
tionnaire given to a representative sample of about 1000 adults from each of
several areas in the world. Areas mostly correspond to countries, while in some
cases countries have been split in different areas (e.g., Congo has been split
in two, Brazzaville and Kinshasa areas). The Gallup World Poll (GWP) an-
swers are then routinely summarized by Gallup into thematic indeces, which
are evaluated for each polled subject and could be used to make comparisons
across countries. A detailed description of the GWP can be found at
http://www.gallupworldpoll.com/content/24046/About.aspx .

In 2014 the usual GWP questionnaire has been augmented with eight ques-
tions, in partnership with the Voices of the Hungry (VoH) project of the Food
and Agriculture Organization (FAO) of the United Nations. These questions
were aimed at evaluating specifically a new index, the Food Insecurity Experi-
ence Scale (FIES). A very challenging issue that has been tackled by the VoH
team is the standardization of the FIES score over different cultures and lan-
guages. Details on how this was performed are given in Cafiero et al. (2016). A
more general discussion is provided in Ballard et al. (2013) and Cafiero et al.
(2014).

We have obtained the individual standardized FIES scores, in addition to
the rest of GWP data for 2014. Data have been aggregated at country level,
taking sampling weights into account. Our aim is to cluster and identify outly-
ing countries, and secondly to evaluate the discriminating power of FIES after
taking into account information collected by the other indices. Our final data
set, aggregated over subjects, is therefore made of n “ 127 countries and p “ 6
indeces. These are Food Insecurity Experience Scale, Civic Engagement Index,
Struggling Index, Food Security Index, Corruption Index, Youth Development
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Index. The aim of each index is rather self-explanatory from its name. Details
can be found in Gallup (2015) and on the GWP website.

In order to explore the number of groups we use the ctlcurves of Garćıa-
Escudero et al. (2011), which for different values of k show the log-likelihood
at convergence of TCLUST, as a function of α and k. They can be used to
determine both the number of groups and the optimal trimming level. The
ctlcurve for the FIES data is reported in Figure 9.
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Fig. 9 ctlcurve plot for the FIES data.

As sometimes happens, Figure 9 clearly indicates that there should be
k ě 2 groups, but it is unclear as with respect to the choice between k “ 2, 3
and 4. Additionally, it is definitely not conclusive with respect to the optimal
trimming level α, which here is a parameter of interest as it is connected with
the number (and identity) of outlying nations. The final estimates depend on
the choice of α. In this example, RTCLUST can be seen as an automatic way of
choosing the optimal trimming level, as the one balancing between robustness
and efficiency. For the proposed methodology we do not need to specify α.
We have applied our method both based on k “ 3 and k “ 4. As with k “ 4
two groups are not very separated, we prefer k “ 3 and report only those
results for reasons of space. We run rtclust with k “ 3, initial trimming
level α0 “ 0.2, αL “ 0.001. The results are remarkably stable with respect
to the tuning parameters. 9 countries (7.1%) are flagged as outlying, 13 are
classified in group 1, 95 in group 2, and 10 in group 3. The cluster profiles



24 Dotto et al.

(cluster means) and raw measurements for the outlying countries are reported
in Table 1. It shall be noted that groups 1 and 3 are of similar size as the group
of outliers. Countries in groups 1 and 3 are very similar though and close to
the reported profiles, while outliers are provably scattered, or have extremal
values at least in one of the dimensions considered.

Table 1 Cluster profiles and measurements for the outlying countries. FIES: Food In-
security Experience Scale. CE: Civic Engagement. St: Struggling. FS: Food Security. Co:
Corruption index. YD: Youth Development. C-j: j-th cluster profile.

FIES CE St FS Co YD
C-1 -0.34 44.64 55.19 69.66 45.53 75.79
C-2 0.13 31.42 63.24 53.99 74.33 58.61
C-3 0.41 22.55 63.94 52.51 67.97 44.90

Myanmar -0.95 66.84 85.80 13.21 53.33 85.48
Sweden -0.64 43.22 48.08 76.68 37.39 59.67
Georgia -0.43 21.24 60.49 41.31 30.85 67.56

New Zealand -0.12 57.98 55.52 67.02 40.50 66.94
Paraguay 0.06 17.43 81.05 88.26 66.31 40.64

Rwanda 0.27 13.12 69.74 61.54 9.29 84.48
Cambodia 0.90 26.93 62.30 20.61 73.53 86.70

South Sudan 3.81 35.17 51.53 35.22 58.29 49.97
Haiti 5.04 35.33 51.47 43.66 57.24 32.07

It can be seen that the three clusters are well separated in terms of all of the
items considered. The first cluster is characterized by the lowest food insecu-
rity (and largest food security), corruption and struggling, and by the largest
civic engagement and youth development. Sadly, only a minority of countries
are assigned to cluster 1. The third cluster is characterized by largest food
insecurity, lowest civic engagement and youth development. No differences are
seen in terms of struggling and FS index between clusters 2 and 3. Finally,
not surprisingly the corruption index is higher in the slightly more developed
countries belonging to cluster 2 than in those in cluster 3. The outliers are eas-
ily explained, as for instance Haiti and South Sudan have an extremely high
FIES. Sweden might belong to cluster 1, but its corruption is so low and its
food security (however measured) is so large that it is outlying. All other out-
liers have at least one measurement in complete disagreement with the three
clusters. A special note regards Myanmar, where there might have been prob-
lems with the questionnaire and with the sampling, and whose measurements
therefore might not be completely reliable.

It shall be noted that the new FIES score is able to separate very well the
three clusters, while Gallup’s FS score only discriminates between the first and
the other two. Other evidence in favor of the added value of FIES is that if
we remove it and repeat the analysis the average silhouette width decreases
by about 4%.
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6 Conclusions and further directions

We have presented an iteratively reweighed approach that can recover wrongly
trimmed observations when applying robust clustering procedures based on a
high (preventive) trimming levels. This approach also makes easier the use of
the TCLUST robust clustering method by diminishing its influence on the ini-
tial trimming level and on the chosen value for the eigenvalue ratio constraint.
RTCLUST has two advantages over TCLUST: first, a sometimes not easily
chosen tuning parameter, the trimming level, does not need to be perfectly
specified in advance and the same happens for the eigenvalue ratio constraint
value c. Secondly, it conjugates high robustness (as it can resist to an α0 pro-
portion of outliers) with high efficiency (as under no or little contamination
the proportion of discarded observations will be much lower than α0). The
simulation study and the real data example also show how this methodology
could be useful in practical applications. There is still room for further work.
Formal theoretical properties could be explored. As commented in Remark 1,
the outlier labeling process at each iteration could also be refined. We have
applied very simple thresholds based on the χ2 approximation for the Maha-
lanobis distances. More accurate procedures could be obtained, for instance,
by considering small sample approximations or correcting for the multiple
testing when labeling outliers (see, e.g., Cerioli 2010; Cerioli and Farcomeni
2011). The multiple testing approach to reweighting might be tweaked to yield
a simultaneous robust estimation and outlier detection method. The proposed
methodology assumes that the number of groups k is known in advance. Es-
timating a correct k value is an important, but difficult too, problem. In fact,
this is an ill-posed problem because the total number of groups depends on
the type of clusters we are searching for or on what we understand by noise.
For instance, a set made up with several disperse observations can be seen as
a proper group with a large scatter or it can also be seen as background noise.
Therefore, searching for the proper number of groups k would require making
some subjective choices specifying all these aspects. Another interesting open
research line has to do with the extension of this iteratively reweighing ap-
proach for mixture modeling. This could be useful in order to address severe
overlaps among groups.
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