It has been shown that in characteristic zero the generators of the minimal supervarieties of finite basic rank belong to the class of minimal superalgebras introduced by Giambruno and Zaicev (Trans Am Math Soc 355:5091-5117, 2003). In the present paper the complete list of minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra is the sum of three graded simple algebras is provided. As a consequence, we negatively answer the question of whether any minimal superalgebra generates a minimal supervariety.
Minimal superalgebras generating minimal supervarieties / DI VINCENZO, ONOFRIO MARIO; RIBEIRO TOMAZ DA SILVA, Viviane; Spinelli, Ernesto. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 288:(2018), pp. 383-400. [10.1007/s00209-017-1893-0]
Minimal superalgebras generating minimal supervarieties
DI VINCENZO, ONOFRIO MARIO;RIBEIRO TOMAZ DA SILVA, VIVIANE;Spinelli, Ernesto
2018
Abstract
It has been shown that in characteristic zero the generators of the minimal supervarieties of finite basic rank belong to the class of minimal superalgebras introduced by Giambruno and Zaicev (Trans Am Math Soc 355:5091-5117, 2003). In the present paper the complete list of minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra is the sum of three graded simple algebras is provided. As a consequence, we negatively answer the question of whether any minimal superalgebra generates a minimal supervariety.File | Dimensione | Formato | |
---|---|---|---|
DiVincenzo_Minimal-superalgebras_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
340.61 kB
Formato
Adobe PDF
|
340.61 kB | Adobe PDF | Contatta l'autore |
DiVincenzo_preprint_Minimal-superalgebras_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
356.2 kB
Formato
Adobe PDF
|
356.2 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.