MINIMAL SUPERALGEBRAS GENERATING MINIMAL SUPERVARIETIES

Onofrio Mario DI VINCENZO - Viviane Ribeiro Tomaz da SILVA Ernesto SPINELLI ${ }^{1}$

Abstract

It has been shown that in characteristic zero the generators of the minimal supervarieties of finite basic rank belong to the class of minimal superalgebras introduced by Giambruno and Zaicev in 2003. In the present paper the complete list of minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra is the sum of three graded simple algebras is provided. As a consequence, we negatively answer the question of whether any minimal superalgebra generates a minimal supervariety.

Classification MSC 2010: 16R10, 16R50, 16W55. Keywords: Superalgebras, Graded Polynomial Identities, Superexponent, Minimal Supervarieties.

1. Introduction

Let F be a field of characteristic zero. A quantitative measure of the polynomial identities satisfied by an associative F-algebra A is given by the sequence of its codimensions $\left\{c_{n}(A)\right\}_{n \geq 1}$, whose n-th term is the dimension of the space of multilinear polynomials in n variables in the corresponding relatively free algebra of countable rank. It was introduced by Regev in the seminal paper [11], where it was proved that when A satisfies a nonzero polynomial identity (in the sequel we shall refer to these algebras as PI algebras) $\left\{c_{n}(A)\right\}_{n \geq 1}$ is exponentially bounded. Later a fundamental contribution of Giambruno and Zaicev ([6] and [7]) showed that

$$
\exp (A):=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}(A)}
$$

exists and is a non-negative integer, which is called the exponent of A.
This provides an integral scale allowing us to measure the growth of any variety and in a natural manner has addressed the research towards a classification of varieties according to the asymptotic behaviour of their codimensions. In this direction, among varieties of some fixed exponent a prominent role is played by the minimal ones, namely those varieties of exponent d such that every proper subvariety has exponent strictly less than d. In [8] it was proved that a variety of exponential growth is minimal if,

[^0]and only if, it is generated by the Grassmann envelope of a so called minimal superalgebra.

More generally, superalgebras are a key ingredient in the structure theory of PI algebras, as shown by Kemer in the solution of the Specht Problem ([10]). From his work also the relevance of their graded polynomial identities appears clear and this has deeply motivated their study. The point of view we are going to explore here involves seeking information about the set of graded identities of a F-algebra A endowed with a \mathbb{Z}_{2}-grading, which we denote by $T_{\mathbb{Z}_{2}}(A)$. From an algebraic point of view, it is a $T_{\mathbb{Z}_{2}}$-ideal of the free F-superalgebra $F\langle Y \cup Z\rangle$, namely a two-sided ideal of $F\langle Y \cup Z\rangle$ invariant under every graded endomorphism, which is completely determined by multilinear polynomials it contains (as we are working in characteristic zero). In particular, extending into this setting the approach of Regev, we are interested in the graded codimensions $\left\{c_{n}^{\mathbb{Z}_{2}}(A)\right\}_{n \geq 1}$ of A, whose n-th term is defined as the dimension of the space of multilinear \mathbb{Z}_{2}-graded polynomials in n variables in the corresponding relatively free \mathbb{Z}_{2}-graded algebra of countable rank.

In [5] it was proved that this sequence is exponentially bounded if, and only if, A is a PI algebra. Under the extra assumption that A is also finitely generated, in [1] the authors stated that

$$
\exp _{\mathbb{Z}_{2}}(A):=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}^{\mathbb{Z}_{2}}(A)}
$$

exists and is a non-negative integer, which is called the \mathbb{Z}_{2}-graded exponent or superexponent of A.

By virtue of this result, as in the ordinary case, it becomes natural and interesting to investigate minimal varieties of PI associative superalgebras (or supervarieties) of finite basic rank (that is, generated by a finitely generated superalgebra satisfying an ordinary polynomial identity) of fixed graded exponent. The starting point for the problem we are going to focus in the present paper on is the following statement in which minimal superalgebras come again into the picture.
Theorem 1.1 (Proposition 3.2 of [4]). Let $\mathcal{V}^{\text {sup }}$ be a supervariety of finite basic rank. If $\mathcal{V}^{\text {sup }}$ is minimal of superexponent $d \geq 2$, then $\mathcal{V}^{\text {sup }}$ is generated by a suitable minimal superalgebra.

According to this theorem, the problem of characterizing the minimal supervarieties of finite basic rank of exponential growth is reduced to deciding whether any minimal superalgebra generates a minimal supervariety. This problem is still open and its possible solution seems to be more involved than that of the ungraded case. In more detail, a minimal superalgebra A is finite-dimensional and defined on an algebraically closed field. Hence, by the generalization of the Wedderburn-Malcev Theorem we can write $A=A_{s s}+J(A)$, where $A_{s s}$ is a maximal semisimple subalgebra of A homogeneous in the \mathbb{Z}_{2}-grading and $J(A)$ is its Jacobson radical (which is homogeneous as well). Also $A_{s s}$ can be written as the direct sum of graded simple algebras which can be of two types: either simple or non-simple as algebras. It has been proved that in the case in which the sequence of the
graded simple components of $A_{s s}$ has in some sense a regular distribution, the supervariety generated by A is minimal (Theorems 4.7 and 5.4 of [4] and 3.6 of [3]).

In spite of this positive result, in the present article we provide a family of minimal superalgebras not generating minimal supervarieties. This is done by characterizing all minimal supervarieties generated by minimal superalgebras whose maximal semisimple homogeneous subalgebra has three graded simple summands.

2. Preliminaries and Announcement of the Main Results

Throughout the rest of the paper, unless otherwise stated, F is a field of characteristic zero and all the algebras are assumed to be associative and to have the same ground field F. For any pair of positive integers s and t the symbol $M_{s \times t}$ means the space of all matrices with s rows and t columns over F and set $M_{s}:=M_{s \times s}$; whereas, if m_{1}, \ldots, m_{n} is a sequence of positive integers, let $U T\left(m_{1}, \ldots, m_{n}\right)$ be the upper block triangular matrix algebra of size m_{1}, \ldots, m_{n}. Finally, if $F\langle X\rangle$ is the free associative algebra on a countable set $X:=\left\{x_{1}, x_{2}, \ldots\right\}$ over F, for any positive integer q the Standard polynomial in q variables $\operatorname{St}_{q}\left(x_{1}, \ldots, x_{q}\right)$ is the element of $F\langle X\rangle$ defined as

$$
\sum_{\sigma \in S_{q}} \operatorname{sgn}(\sigma) x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(q)}
$$

An algebra A is a \mathbb{Z}_{2}-graded algebra or a superalgebra if it has a vector space decomposition $A=A^{(0)} \oplus A^{(1)}$ such that $A^{(i)} A^{(j)} \subseteq A^{(i+j)}$. The elements of $A^{(0)}$ are called homogeneous of degree 0 and those of $A^{(1)}$ homogeneous of degree 1. An element w of A is homogeneous if it is homogeneous of degree 0 or 1 (and denote its degree by $|w|$), whereas a subalgebra or an ideal $V \subseteq A$ is homogeneous if $V=\left(V \cap A^{(0)}\right) \oplus\left(V \cap A^{(1)}\right)$. The superalgebra A is called simple (or \mathbb{Z}_{2}-simple) if the multiplication is non-trivial and it has no non-trivial homogeneous ideals. In this case, we shall also refer to A as a graded simple algebra.

Let $F\langle Y \cup Z\rangle$ be the free associative algebra on the disjoint countable sets of variables $Y:=\left\{y_{1}, y_{2}, \ldots\right\}$ and $Z:=\left\{z_{1}, z_{2}, \ldots\right\}$. It has a natural superalgebra structure if we require that the variables from Y have degree 0 and those from Z have degree 1. The superalgebra $F\langle Y \cup Z\rangle$ is said to be the free superalgebra over F. An element $f\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$ of $F\langle Y \cup Z\rangle$ is a \mathbb{Z}_{2}-graded polynomial identity for a superalgebra $A=A^{(0)} \oplus A^{(1)}$ if $f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=0_{A}$ for every $a_{1}, \ldots, a_{m} \in A^{(0)}$ and $b_{1}, \ldots, b_{n} \in$ $A^{(1)}$. Given a $T_{\mathbb{Z}_{2}}$-ideal I of $F\langle Y \cup Z\rangle$, the variety of superalgebras or supervariety $\mathcal{V}^{\text {sup }}$ associated to I is the class of all F-superalgebras whose $T_{\mathbb{Z}_{2}}$-ideals of graded polynomial identities contain I. The $T_{\mathbb{Z}_{2}}$-ideal I is denoted by $T_{\mathbb{Z}_{2}}\left(\mathcal{V}^{s u p}\right)$. The supervariety $\mathcal{V}^{\text {sup }}$ is generated by the superalgebra A if $T_{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=T_{\mathbb{Z}_{2}}(A)$, and in this case we write $\mathcal{V}^{\text {sup }}=\operatorname{supvar}(A)$. Furthermore, set $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right):=\exp _{\mathbb{Z}_{2}}(A)=\lim _{m \rightarrow+\infty} \sqrt[m]{c_{m}^{\mathbb{Z}_{2}}(A)}$, the superexponent of the supervariety $\mathcal{V}^{\text {sup }}$ (we recall that the m-th \mathbb{Z}_{2}-graded
codimension $c_{m}^{\mathbb{Z}_{2}}(A)$ of A is the dimension of the vector space $\frac{P_{m}^{s u p}}{P_{m}^{s u p} \cap T_{\mathbb{Z}_{2}}(A)}$, where $P_{m}^{s u p}$ is the space of multilinear polynomials of degree m of $F\langle Y \cup Z\rangle$ in the variables $\left.y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right)$.

Assume that A is a finite-dimensional superalgebra and let $A=A_{s s}+$ $J(A)$ be its Wedderburn-Malcev decomposition. Furthermore the maximal semisimple homogeneous subalgebra $A_{s s}$ of A can be written as the direct sum of graded simple algebras whose structures are well known, at least when the ground field is algebraically closed. In fact, they must be among the following types:
(a) $M_{k, l}:=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, where $k \geq l \geq 0, k \neq 0, A \in M_{k}, D \in M_{l}, B \in$ $M_{k \times l}$ and $C \in M_{l \times k}$, endowed with the grading $M_{k, l}^{(0)}:=\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right)$ and $M_{k, l}^{(1)}:=\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$;
(b) $M_{m}(F \oplus t F)$, where $t^{2}=1_{F}$, with grading $\left(M_{m}, t M_{m}\right)$.

Giambruno and Zaicev in [8] introduced the definition of minimal superalgebra.

Definition 2.1. Let F be an algebraically closed field. A superalgebra A is called minimal if it is finite-dimensional and $A=A_{\text {ss }}+J(A)$ where
(i) $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$ with A_{1}, \ldots, A_{n} graded simple algebras;
(ii) there exist homogeneous elements $w_{12}, \ldots, w_{n-1, n} \in J(A)$ and minimal homogeneous idempotents $e_{1} \in A_{1}, \ldots, e_{n} \in A_{n}$ such that

$$
e_{i} w_{i, i+1}=w_{i, i+1} e_{i+1}=w_{i, i+1} \quad 1 \leq i \leq n-1
$$

and

$$
w_{12} w_{23} \cdots w_{n-1, n} \neq 0_{A}
$$

(iii) $w_{12}, \ldots, w_{n-1, n}$ generate $J(A)$ as a two-sided ideal of A.

In Lemma 3.5 of [8] it was shown that the minimal superalgebra $A=$ $A_{s s}+J(A)$ has the following vector space decomposition

$$
\begin{equation*}
A=\bigoplus_{1 \leq i \leq j \leq n} A_{i j} \tag{1}
\end{equation*}
$$

where $A_{11}:=A_{1}, \ldots, A_{n n}:=A_{n}$ and, for all $i<j$,

$$
A_{i j}:=A_{i} w_{i, i+1} A_{i+1} \cdots A_{j-1} w_{j-1, j} A_{j}
$$

Moreover $J(A)=\oplus_{i<j} A_{i j}$ and $A_{i j} A_{k l}=\delta_{j k} A_{i l}$, where $\delta_{j k}$ is the Kronecker delta. Finally, as stressed in Chapter 8 of [9], the order of the components A_{1}, \ldots, A_{n} of $A_{s s}$ is important. For this reason, in the sequel we shall tacitly agree that if $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$, then $A_{1} J(A) A_{2} J(A) \cdots A_{n} \neq 0_{A}$. According to the main result of $[1], \exp _{\mathbb{Z}_{2}}(A)=\operatorname{dim}_{F}\left(A_{s s}\right)$.

The aim of the paper is to contribute to the classification of minimal supervarieties of fixed graded exponent. We recall the definition.

Definition 2.2. A variety $\mathcal{V}^{\text {sup }}$ of PI superalgebras is said to be minimal of superexponent d if $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=d$ and $\exp _{\mathbb{Z}_{2}}\left(\mathcal{U}^{\text {sup }}\right)<d$ for every proper subvariety $\mathcal{U}^{\text {sup }}$ of $\mathcal{V}^{\text {sup }}$.

As observed in the Introduction, in the case of finite basic rank the problem that still remains open is to characterize those minimal superalgebras generating minimal supervarieties. In this direction the main contribution can be summarized in the following

Theorem 2.3 (3.6 of [3]). Let $A=A_{s s}+J(A)$ be a minimal superalgebra. If $A_{s s}=A_{1} \oplus \cdots \oplus A_{n}$ and there exists $1 \leq h \leq n$ such that A_{1}, \ldots, A_{h} are non-simple graded simple and A_{h+1}, \ldots, A_{n} are simple graded simple algebras (or vice versa), then the supervariety generated by A is minimal of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus \cdots \oplus A_{n}\right)$.

According to the preceding theorem, the smallest possible number of graded simple summands of the maximal semisimple homogeneous subalgebra of a minimal superalgebra A such that $\operatorname{supvar}(A)$ is not minimal is $n=3$ (for the sake of completeness, we recall that the cases $n=1$ and $n=2$ were originally settled in Corollary 3.5 and Theorem 5.4 of [4], respectively). For this reason it becomes interesting to investigate what happens when $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$. By virtue of Theorem 2.3 the situations which remain to be considered are when:

- A_{1} and A_{3} are non-simple graded simple and A_{2} is simple graded simple;
- A_{1} and A_{3} are simple graded simple and A_{2} is non-simple graded simple.
In the former case, as a consequence of the fact that the $T_{\mathbb{Z}_{2}}$-ideals of graded identities of non-isomorphic minimal superalgebras having the same maximal semisimple homogeneous subalgebra coincide, we prove the following

Theorem 2.4. Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{m}(F \oplus t F), \quad A_{2}=M_{k, l} \quad \text { and } \quad M_{r}(F \oplus s F)
$$

Then A generates a minimal supervariety of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus\right.$ A_{3}).

The latter case is more interesting and involved and it heavily depends on the structure of the subspace A_{13} appearing in the decomposition (1), which is a non-zero $\left(A_{1}, A_{3}\right)$-bimodule. A basic ingredient is the classification of minimal superalgebras of such a type summarized in the following
Theorem 2.5. For a minimal superalgebra $A=A_{s s}+J(A)$ such that $A_{s s}=$ $A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{k, l}, \quad A_{2}=M_{m}(F \oplus t F) \quad \text { and } \quad A_{3}=M_{r, s}
$$

(a) there exist two isomorphism-types (depending upon the parity of $\left|w_{12}\right|+$ $\left.\left|w_{23}\right|\right)$ if $k>l$ and $r>s$ and A_{13} is irreducible as an $\left(A_{1}, A_{3}\right)$ bimodule;
(b) there exists a unique isomorphism-type if A_{13} is irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule and either $k=l$ or $r=s$;
(c) there exists a unique isomorphism-type if A_{13} is not irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule.

More precisely, in Section 4 we shall construct three concrete examples of minimal superalgebras, \hat{A}, \hat{B} and \check{A}. We shall show that all the minimal superalgebras as in (a) are isomorphic either to \hat{A} or to \hat{B}, those satisfying the conditions in (b) are again isomorphic to \hat{A} (which is, in such an event, isomorphic to \hat{B}) and, finally, those as in (c) are isomorphic to \check{A}.

Our main result is the following.
Theorem 2.6. Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ with

$$
A_{1}=M_{k, l}, \quad A_{2}=M_{m}(F \oplus t F) \quad \text { and } \quad A_{3}=M_{r, s} .
$$

(a) If A_{13} is irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule, then A generates a minimal supervariety of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus A_{3}\right)$;
(b) if A_{13} is not irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule, then A generates a minimal supervariety of superexponent $\operatorname{dim}_{F}\left(A_{1} \oplus A_{2} \oplus A_{3}\right)$ if, and only if, either $k=l$ or $r=s$.

3. The case in which A_{1} and A_{3} are non-simple graded simple

Assume throughout this section that $A_{1}=M_{m}(F \oplus t F), A_{2}=M_{k, l}$ and $A_{3}=M_{r}(F \oplus s F)\left(\right.$ where $\left.t^{2}=s^{2}=1_{F}\right)$. We aim to show that any minimal superalgebra whose maximal semisimple homogeneous subalgebra coincides with $A_{1} \oplus A_{2} \oplus A_{3}$ generates a minimal supervariety. To this end we need to investigate in more detail the structure of such a superalgebra: this is done via the language of actions of automorphisms. In fact, it is well known that any superalgebra A can be viewed as an algebra with action of an automorphism ϕ of A of order at most 2. Indeed, the homomorphism ϕ of $A=A^{(0)} \oplus A^{(1)}$ defined by $\phi\left(a_{0}\right):=a_{0}$ and $\phi\left(a_{1}\right):=-a_{1}$ for any $a_{0} \in A^{(0)}$ and $a_{1} \in A^{(1)}$ is an automorphism of A of order at most 2. Conversely, if A is an algebra with an automorphism ϕ of order at most 2, then, setting $A^{(0)}:=\{a \mid a \in A, \phi(a)=a\}$ and $A^{(1)}:=\{a \mid a \in A, \phi(a)=-a\}, A$ is a superalgebra with grading $\left(A^{(0)}, A^{(1)}\right)$.

Let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus$ A_{3}. By regarding A as a ϕ-algebra, for $i \in\{1,3\}$ we can write A_{i} as $A_{i}=$ $I_{i} \oplus \phi\left(I_{i}\right)$, where I_{i} is a minimal two-sided ideal of A_{i}, and the corresponding homogeneous idempotents (of degree zero) e_{i} appearing in Definition 2.1 as $e_{i}=\rho_{i}+\phi\left(\rho_{i}\right)$ with ρ_{i} a non-homogeneous minimal idempotent of I_{i}. For simplicity, set $\bar{\rho}_{i}:=\phi\left(\rho_{i}\right)$ and $\bar{I}_{i}:=\phi\left(I_{i}\right)$.

Let us consider the element $w_{13}:=w_{12} w_{23}$ and the subspace A_{13} of the decomposition (1). As for the homogeneous radical elements $w_{j, j+1}$ defining A the equality

$$
e_{j} w_{j, j+1} e_{j+1}=e_{j} w_{j, j+1}^{6}=w_{j, j+1} e_{j+1}=w_{j, j+1}
$$

is satisfied, one has that

$$
\begin{aligned}
w_{13} & =\left(\rho_{1}+\bar{\rho}_{1}\right) w_{12} w_{23}\left(\rho_{3}+\bar{\rho}_{3}\right) \\
& =\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3}+\bar{\rho}_{1} w_{12} w_{23} \rho_{3}+\rho_{1} w_{12} w_{23} \bar{\rho}_{3}
\end{aligned}
$$

and

$$
A_{13}=A_{1} w_{12} A_{2} w_{23} A_{3}=A_{1} w_{12} e_{2} A_{2} e_{2} w_{23} A_{3}=A_{1} w_{12} w_{23} A_{3} .
$$

Thus

$$
\begin{aligned}
A_{13}= & I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \\
& I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3} .
\end{aligned}
$$

As by the definition of minimal superalgebra $w_{13} \neq 0_{A}$, we deduce that at least one of the homogeneous summands $\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3}$ and $\bar{\rho}_{1} w_{12} w_{23} \rho_{3}+\rho_{1} w_{12} w_{23} \bar{\rho}_{3}$ of w_{13} is non-zero. If just one of those is nonzero, then we shall say in the sequel that A_{13} is a direct sum of two terms, otherwise we shall refer to A_{13} as a direct sum of four terms.

Let us suppose that A_{13} is a direct sum of two terms. In particular, if $\rho_{1} w_{12} w_{23} \rho_{3}+\bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \neq 0_{A}$, then

$$
\begin{equation*}
A_{13}=I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3}, \tag{2}
\end{equation*}
$$

otherwise

$$
\begin{equation*}
A_{13}=I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3} . \tag{3}
\end{equation*}
$$

Set $\mathcal{I}_{1}:=I_{1}$ and $\epsilon_{1}:=\rho_{1}$ and

$$
\mathcal{I}_{3}:=\left\{\begin{array}{ll}
I_{3} & \text { if }(2) \text { occurs; } \\
\bar{I}_{3} & \text { if }(3) \text { occurs }
\end{array} \quad \text { and } \quad \epsilon_{3}:= \begin{cases}\rho_{3} & \text { if (2) occurs; } \\
\bar{\rho}_{3} & \text { if (3) occurs. }\end{cases}\right.
$$

As before, let $\bar{\epsilon}_{i}:=\phi\left(\epsilon_{i}\right)$ and $\overline{\mathcal{I}}_{i}:=\phi\left(\mathcal{I}_{i}\right)$ for $i \in\{1,3\}$. In any event we can write

$$
A_{13}=\mathcal{I}_{1} \epsilon_{1} w_{12} w_{23} \epsilon_{3} \mathcal{I}_{3} \oplus \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} w_{12} w_{23} \bar{\epsilon}_{3} \overline{\mathcal{I}}_{3}
$$

Furthermore let us define

$$
v_{12}:= \begin{cases}\epsilon_{1} w_{12}+\bar{\epsilon}_{1} w_{12} & \text { if }\left|w_{12}\right|=0 ; \\ \epsilon_{1} w_{12}-\bar{\epsilon}_{1} w_{12} & \text { otherwise }\end{cases}
$$

and

$$
v_{23}:= \begin{cases}w_{23} \epsilon_{3}+w_{23} \bar{\epsilon}_{3} & \text { if }\left|w_{23}\right|=0 \\ w_{23} \epsilon_{3}-w_{23} \bar{\epsilon}_{3} & \text { otherwise }\end{cases}
$$

It is straightforward to check that the subalgebra of A generated by A_{1}, A_{2}, A_{3} and the homogeneous elements v_{12} and v_{23} is a minimal superalgebra coinciding with A. Hence we can always assume that the radical elements generating $J(A)$ are of degree 0 .

Proposition 3.1. There exists one isomorphism-type for a minimal superalgebra $A=\left(A_{1} \oplus A_{2} \oplus A_{3}\right)+J(A)$ such that A_{13} is a direct sum of two terms.

Proof. Using the same terminology previously introduced for the superalgebra A, take another minimal superalgebra $B=B_{s s}+J(B)$ such that $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ with $B_{j}=A_{j}$ for every $1 \leq j \leq 3$ and B_{13} is a direct sum of two terms. Let us call z_{12} and z_{23} the homogeneous radical elements defining B (which we can assume to be of degree zero) and let $f_{j} \in B_{j}$ be the minimal idempotents appearing in Definition 2.1. Using the same above arguments one has that

$$
B_{13}=\mathcal{J}_{1} \nu_{1} z_{12} z_{23} \nu_{3} \mathcal{J}_{3} \oplus \overline{\mathcal{J}}_{1} \bar{\nu}_{1} z_{12} z_{23} \bar{\nu}_{3} \overline{\mathcal{J}}_{3}
$$

where, for $i \in\{1,3\}, B_{i}=\mathcal{J}_{i} \oplus \overline{\mathcal{J}}_{i}$, with \mathcal{J}_{i} a minimal two-sided ideal of B_{i}, and ν_{i} is the non-homogeneous minimal idempotent of \mathcal{J}_{i} such that $f_{i}=\nu_{i}+\bar{\nu}_{i}$ (here we are regarding B as an algebra with action of an automorphism of order 2 , which we call ϕ_{B} to distinguish it from that of A, and set $\overline{\mathcal{J}}_{i}:=\phi_{B}\left(\mathcal{J}_{i}\right)$ and $\left.\bar{\nu}_{i}:=\phi_{B}\left(\nu_{i}\right)\right)$.

For $1 \leq j \leq 3$, let us consider the superalgebra isomorphisms

$$
\Psi_{j j}: A_{j} \longrightarrow B_{j}
$$

such that $\Psi_{j j}\left(\epsilon_{j}\right)=\nu_{j}$ (and hence $\Psi_{j j}\left(\bar{\epsilon}_{j}\right)=\bar{\nu}_{j}$) if $j \neq 2$ and $\Psi_{22}\left(e_{2}\right)=f_{2}$. Since $\mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2}$ is irreducible as an $\left(\mathcal{I}_{1}, A_{2}\right)$-bimodule, the map

$$
\eta: \mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2} \longrightarrow \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2}, \quad a_{1} \epsilon_{1} \otimes e_{2} a_{2} \longmapsto a_{1} \epsilon_{1} v_{12} e_{2} a_{2}
$$

is a bimodule isomorphism. In an analogous manner we define an isomorphism from $\mathcal{J}_{1} \nu_{1} \otimes f_{2} B_{2}$ into $\mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2}$. On the other hand the action of the maps Ψ_{11} and Ψ_{22} on $\mathcal{I}_{1} e_{1}$ and $e_{2} A_{2}$ respectively induces an isomorphism from $\mathcal{I}_{1} \epsilon_{1} \otimes e_{2} A_{2}$ into $\mathcal{J}_{1} \nu_{1} \otimes f_{2} B_{2}$. The final outcome of these deductions is that there exists a vector space isomorphism
$\psi_{12}: \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2} \longrightarrow \mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2}, \quad a_{1} \epsilon_{1} v_{12} e_{2} a_{2} \longmapsto \Psi_{11}\left(a_{1}\right) \nu_{1} z_{12} f_{2} \Psi_{22}\left(b_{2}\right)$.
Now, as

$$
A_{12}=\mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2} \oplus \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} v_{12} e_{2} A_{2}
$$

and

$$
B_{12}=\mathcal{J}_{1} \nu_{1} z_{12} f_{2} B_{2} \oplus \overline{\mathcal{J}}_{1} \bar{\nu}_{1} z_{12} f_{2} B_{2}
$$

the map

$$
\Psi_{12}: A_{12} \longrightarrow B_{12}, \quad h+k \longmapsto \psi_{12}(h)+\overline{\psi_{12}(\bar{k})}
$$

(where, obviously, $h \in \mathcal{I}_{1} \epsilon_{1} v_{12} e_{2} A_{2}, k \in \overline{\mathcal{I}}_{1} \bar{\epsilon}_{1} v_{12} e_{2} A_{2}$ and $\overline{\psi_{12}(\bar{k})}:=\phi_{B}\left(\psi_{12}(\phi(k))\right)$) is a vector space isomorphism preserving the \mathbb{Z}_{2}-gradings.

The same argument yields that the map
$\psi_{23}: A_{2} e_{2} v_{23} \epsilon_{3} \mathcal{I}_{3} \longrightarrow B_{2} f_{2} z_{23} \nu_{3} \mathcal{J}_{3}, \quad a_{2} e_{2} v_{23} \epsilon_{3} a_{3} \longmapsto \Psi_{22}\left(a_{2}\right) f_{2} z_{23} \nu_{3} \Psi_{33}\left(a_{3}\right)$
induces a vector space isomorphism Ψ_{23}, preserving the \mathbb{Z}_{2}-gradings, from $A_{23}=A_{2} e_{2} v_{23} \epsilon_{3} \mathcal{I}_{3} \oplus A_{2} e_{2} v_{23} \bar{\epsilon}_{3} \overline{\mathcal{I}}_{3}$ into $B_{23}=B_{2} f_{2} z_{23} \nu_{3} \mathcal{J}_{3} \oplus B_{2} f_{2} z_{23} \bar{\nu}_{3} \overline{\mathcal{J}}_{3}$.

Finally, the same conclusion holds for

$$
\Psi_{13}: A_{13} \longrightarrow B_{13}
$$

$$
a_{1} \epsilon_{1} v_{12} v_{23} \epsilon_{3} a_{3}+a_{1}^{\prime} \bar{\epsilon}_{1} v_{12} v_{23} \bar{\epsilon}_{3} a_{3}^{\prime} \longmapsto \Psi_{11}\left(a_{1}\right) \nu_{1} z_{12} z_{23} \nu_{3} \Psi_{33}\left(a_{3}\right)+\Psi_{11}\left(a_{1}^{\prime}\right) \bar{\nu}_{1} z_{12} z_{23} \bar{\nu}_{3} \Psi_{33}\left(a_{3}^{\prime}\right)
$$

But $A=\oplus_{1 \leq i \leq j \leq 3} A_{i j}$ and $B=\oplus_{1 \leq i \leq j \leq 3} B_{i j}$, hence, gluing the maps $\Psi_{i j}$, we have actually constructed a vector space isomorphism from A into
B preserving the \mathbb{Z}_{2}-gradings, which is easily seen to be a superalgebra isomorphism.

If we drop the assumption on the decomposition of A_{13} we are able to show that non-isomorphic minimal superalgebras with the same semisimple part satisfy the same \mathbb{Z}_{2}-graded polynomial identities.

Theorem 3.2. Let $A_{1}=M_{m}(F \oplus t F), A_{2}=M_{k, l}$ and $A_{3}=M_{r}(F \oplus s F)$ (where $t^{2}=s^{2}=1_{F}$). Any minimal superalgebra whose maximal semisimple homogeneous subalgebra coincides with $A_{1} \oplus A_{2} \oplus A_{3}$ has the same $T_{\mathbb{Z}_{2}}$-ideal of graded polynomial identities.

Proof. By virtue of Proposition 3.1, if A and B are minimal superalgebras such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}=B_{s s}$ and both A_{13} and B_{13} are direct sums of two terms, then A and B are isomorphic and, consequently, satisfy the same graded polynomial identities. The rest of the proof involves producing a situation of this kind.

To this end, let $A=A_{s s}+J(A)$ be a minimal superalgebra such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ and A_{13} is a direct sum of four terms, namely (using the above notations)

$$
\begin{aligned}
A_{13}= & I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \\
& I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}
\end{aligned}
$$

Set $H:=I_{1} \rho_{1} w_{12} w_{23} \rho_{3} I_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3}$, which is a two-sided homogeneous ideal of A. Let us consider the superalgebra $A^{\prime}:=A / H$. We observe that its maximal semisimple subalgebra $A_{s s}^{\prime}$ coincides with $A_{s s}$ and, as $H \subseteq J(A)$, its Jacobson radical $J\left(A^{\prime}\right)$ is equal to $J(A) / H$. As a consequence, the homogeneous elements $w_{12}+H$ and $w_{23}+H$ of A^{\prime} generate $J\left(A^{\prime}\right)$. Furthermore

$$
\left(w_{12}+H\right) \cdot\left(w_{23}+H\right)=w_{12} w_{23}+H \neq 0_{A^{\prime}}
$$

otherwise also $I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus \bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}$ should be in H, which contradicts the original assumption on A_{13}. Therefore we conclude that A^{\prime} is a minimal superalgebra such that $A_{13}^{\prime}=A_{13} / H$ is a direct sum of two terms.

Now, take the homogeneous two-sided ideal $K:=I_{1} \rho_{1} w_{12} w_{23} \bar{\rho}_{3} \bar{I}_{3} \oplus$ $\bar{I}_{1} \bar{\rho}_{1} w_{12} w_{23} \rho_{3} I_{3}$ of A. Proceeding in the same way, we obtain that $A^{\prime \prime}:=$ A / K is a minimal superalgebra such that $A_{s s}^{\prime \prime}=A_{s s}$ and $A_{13}^{\prime \prime}$ is a direct sum of two terms. Thus, by virtue of Proposition 3.1, A^{\prime} is isomorphic to $A^{\prime \prime}$.

Looking at the identities satisfied by these superalgebras, it is easily seen that

$$
\begin{equation*}
T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)=T_{\mathbb{Z}_{2}}\left(A^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

On the other hand, let $f \in F\langle Y \cup Z\rangle$ be a graded polynomial identity for A^{\prime}. Since $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)=T_{\mathbb{Z}_{2}}\left(A^{\prime \prime}\right)$, for any graded evaluation $\mu: F\langle Y \cup Z\rangle \longrightarrow A$ one has that

$$
\mu(f) \in H \cap K=0_{A}
$$

Therefore f is a graded polynomial identity for A. Hence $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right) \subseteq T_{\mathbb{Z}_{2}}(A)$ and, by virtue of (4), the equality holds.

As an easy consequence one has the first of the results announced in Section 2, namely Theorem 2.4.

Proof of Theorem 2.4. Set $\mathcal{V}^{\text {sup }}:=\operatorname{supvar}(A)$ and let us consider a subvariety $\mathcal{U}^{\text {sup }} \subseteq \mathcal{V}^{\text {sup }}$ such that $\exp _{\mathbb{Z}_{2}}\left(\mathcal{V}^{\text {sup }}\right)=\exp _{\mathbb{Z}_{2}}\left(\mathcal{U}^{\text {sup }}\right)$. Since $\mathcal{V}^{\text {sup }}$ satisfies some Capelli identities, $\mathcal{U}^{\text {sup }}$ has finite basic rank (see Theorem 11.4.3 of [9]). Hence, by a result of Kemer, $\mathcal{U}^{s u p}$ is generated by a finitedimensional superalgebra \tilde{B}. According to Lemma 8.1.4 of [9], there exists a minimal superalgebra B such that $T_{\mathbb{Z}_{2}}(\tilde{B}) \subseteq T_{\mathbb{Z}_{2}}(B)$ and $\exp _{\mathbb{Z}_{2}}(\tilde{B})=$ $\exp _{\mathbb{Z}_{2}}(B)$. Therefore $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$ and $\exp _{\mathbb{Z}_{2}}(A)=\exp _{\mathbb{Z}_{2}}(B)$ as well. Furthermore from Lemma 3.3 of [4] we know that $B_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$.

At this point, Theorem 3.2 yields that $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$, and this concludes the proof.

4. The case in which A_{1} and A_{3} are simple graded simple

Throughout this section let $A_{1}=M_{k, l}, A_{2}=M_{m}(F \oplus t F)$ and $A_{3}=M_{r, s}$ and consider a minimal superalgebra A such that $A_{s s}=A_{1} \oplus A_{2} \oplus A_{3}$ (for the elements defining A we use the notation of Definition 2.1). As before, regarding A as a ϕ-algebra, write $A_{2}=I_{2} \oplus \phi\left(I_{2}\right)$, where I_{2} is a minimal twosided ideal of A_{2}, and its corresponding homogeneous idempotents (of degree zero) e_{2} as $\rho_{2}+\phi\left(\rho_{2}\right)$ with ρ_{2} a non-homogeneous minimal idempotent of I_{2}. For simplicity, set $\bar{\rho}_{2}:=\phi\left(\rho_{2}\right)$ and $\bar{I}_{2}:=\phi\left(I_{2}\right)$. Using the usual arguments, one has that

$$
A_{13}=A_{1} w_{12} \rho_{2} w_{23} A_{3}+A_{1} w_{12} \bar{\rho}_{2} w_{23} A_{3}
$$

is an $\left(A_{1}, A_{3}\right)$-bimodule such that each of its summands is an irreducible (A_{1}, A_{3})-bimodule.

We make a preliminary observation.
Remark. If the elements $w_{12} \rho_{2} w_{23}$ and $w_{12} \bar{\rho}_{2} w_{23}$ are linearly dependent, then they coincide.

Proof. Assume that there exist $\alpha, \beta \in F \backslash\left\{0_{F}\right\}$ such that

$$
\alpha w_{12} \rho_{2} w_{23}+\beta w_{12} \bar{\rho}_{2} w_{23}=0_{A}
$$

Consequently

$$
(-1)^{\left|w_{12}\right|+\left|w_{23}\right|}\left(\alpha w_{12} \bar{\rho}_{2} w_{23}+\beta w_{12} \rho_{2} w_{23}\right)=0_{A}
$$

as well. The combination of the above equalities yields

$$
\left\{\begin{array}{l}
\alpha w_{12} \rho_{2} w_{23}+\beta w_{12} \bar{\rho}_{2} w_{23}=0_{A} \\
\beta w_{12} \rho_{2} w_{23}+\alpha w_{12} \bar{\rho}_{2} w_{23}=0_{A}
\end{array}\right.
$$

Now, if $\alpha^{2}-\beta^{2} \neq 0_{F}$ then $w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23}=0_{A}$, and hence

$$
w_{12} w_{23}=w_{12} e_{2} w_{23}=w_{12}\left(\rho_{2}+\bar{\rho}_{2}\right) w_{23}=0_{A}
$$

which is not allowed since, according to Definition 2.1, that element is nonzero. Thus suppose that $\alpha^{2}=\beta^{2}$. If $\alpha=\beta$ one has again that $w_{12} w_{23}=0_{A}$, which is not allowed. Therefore it must be $\alpha=-\beta$, and this implies that $w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23}$.

Assume now that A_{13} is irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule. Then

$$
A_{13}=A_{1} w_{12} \rho_{2} w_{23} A_{3}=A_{1} w_{12} \bar{\rho}_{2} w_{23} A_{3}
$$

This means that there exist an integer k and, for every $1 \leq i \leq k$, elements $a_{i} \in A_{1}$ and $b_{i} \in A_{3}$ such that $w_{12} \bar{\rho}_{2} w_{23}=\sum_{i=1}^{k} a_{i} w_{12} \rho_{2} w_{23} \bar{b}_{i}$. It follows that

$$
\begin{aligned}
w_{12} \bar{\rho}_{2} w_{23} & =e_{1} w_{12} \bar{\rho}_{2} w_{23} e_{3}=\sum_{i=1}^{k} e_{1} a_{i} w_{12} \rho_{2} w_{23} b_{i} e_{3}=\sum_{i=1}^{k} e_{1} a_{i} e_{1} w_{12} \rho_{2} w_{23} e_{3} b_{i} e_{3} \\
& =\sum_{i=1}^{k} \alpha_{i} e_{1} w_{12} \rho_{2} w_{23} \beta_{i} e_{3}=\gamma w_{12} \rho_{2} w_{23},
\end{aligned}
$$

since $e_{1} a_{i} e_{1}=\alpha_{i} e_{1}$ and $e_{3} b_{i} e_{3}=\beta_{i} e_{3}$ for suitable $\alpha_{i}, \beta_{i} \in F$ and $\gamma:=$ $\sum_{i=1}^{k} \alpha_{i} \beta_{i}$ is in $F \backslash\left\{0_{F}\right\}$. By the above remark, we conclude that

$$
\begin{equation*}
w_{12} \rho_{2} w_{23}=w_{12} \bar{\rho}_{2} w_{23} \tag{5}
\end{equation*}
$$

and it is a homogeneous element of degree $\left|w_{12}\right|+\left|w_{23}\right|$.
Before proceeding, we construct two examples of minimal superalgebras belonging to the class we are considering. To this end, we recall that a \mathbb{Z}_{2}-grading on the complete matrix algebra M_{n} is called elementary if there exists a n-tuple $\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}_{2}^{n}$ such that the matrix units $E_{i j}$ of M_{n} are homogeneous and $E_{i j} \in M_{n}^{(\tau)}$ if, and only if, $\tau=g_{j}-g_{i}$. In an equivalent manner, we can define a map $\left|\mid:\{1, \ldots, n\} \longrightarrow \mathbb{Z}_{2}\right.$ inducing a grading on M_{n} by setting the degree of $E_{i j}$ equal to $|j|-|i|$. Obviously the algebra of upper block triangular matrices also admits elementary gradings. In fact, the embedding of such an algebra into a full matrix algebra with an elementary grading makes it a homogeneous subalgebra.

Now, let us consider the subalgebra of $U T(k+l, 2 m, r+s)$ consisting of matrices of the form

$$
\left(\begin{array}{cccc}
C & J_{1} & J_{2} & J_{3} \\
0 & D & E & J_{4} \\
0 & E & D & J_{5} \\
0 & 0 & 0 & H
\end{array}\right)
$$

where $C \in M_{k+l}, D, E \in M_{m}, H \in M_{r+s}, J_{1}, J_{2} \in M_{(k+l) \times m}, J_{3} \in$ $M_{(k+l) \times(r+s)}, J_{4}, J_{5} \in M_{m \times(r+s)}$. We endow it with two gradings induced by the $(k+l+2 m+r+s)$-tuples

$$
(\underbrace{0, \ldots, 0}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }}, \underbrace{0, \ldots, 0}_{r \text { times }}, \underbrace{1, \ldots, 1}_{s \text { times }})
$$

and

$$
(\underbrace{0, \ldots, 0}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }}, \underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{s \text { times }}) .
$$

Let us denote these superalgebras by $\left(\hat{A},| |_{\hat{A}}\right)$ and $\left(\hat{B},| |_{\hat{B}}\right)$ (and their matrix units by $E_{i j}^{(\hat{A})}$ and $E_{i j}^{(\hat{B})}$) respectively. To make more transparent the graded
structure of these algebras, it is easier to represent each element of \hat{A} as

	k	l	m	m	r	s
k	$\left(C_{0}\right.$	C_{1}	\check{J}_{0}	J_{1}^{\prime}	$J_{0}^{\prime \prime}$	$J_{1}^{\prime \prime \prime}$
l	\tilde{C}_{1}		\breve{J}_{1}	J_{0}^{\prime}	$J_{1}^{\prime \prime}$	$J_{0}^{\prime \prime \prime}$
m	0	0	D_{0}	E_{1}	\tilde{J}_{0}	$\widetilde{J}_{1}^{\prime}$
m	0	0	E_{1}	D_{0}	\tilde{J}_{1}	\tilde{J}_{0}^{\prime}
r	0		0	0	H_{0}	H_{1}
s	(0	0	0	0	\tilde{H}_{1}	$\left.\tilde{H}_{0}\right)$

where the subscripted indices 0 and 1 denote the homogeneous degree of the elements and the integers k, l, m, r, s the sizes of the blocks in the matrix. Similarly, we can write the elements of $\left(\hat{B},| |_{\hat{B}}\right)$ as

	k	l	m	m	r	s
k			C_{0}	C_{1}	\check{J}_{0}	J_{1}^{\prime}
l	\hat{J}_{1}	\hat{J}_{0}^{\prime}				
m						
m						
r	\tilde{C}_{1}	\tilde{C}_{0}	\check{J}_{1}	J_{0}^{\prime}	\hat{J}_{0}	\hat{J}_{1}^{\prime}
0	0	D_{0}	E_{1}	\tilde{J}_{1}	\tilde{J}_{0}^{\prime}	
0	0	E_{1}	D_{0}	\tilde{J}_{0}	\tilde{J}_{1}^{\prime}	
0	0	0	0	H_{0}	H_{1}	
0	0	0	0	\tilde{H}_{1}	\tilde{H}_{0}	

It is easily seen that the maximal semisimple homogeneous subalgebra of \hat{A} is equal to $\hat{A}_{1} \oplus \hat{A}_{2} \oplus \hat{A}_{3}$ where

$$
\hat{A}_{1}:=\left\langle E_{i j}^{(\hat{A})} \mid 1 \leq i, j \leq k+l\right\rangle \cong M_{k, l}
$$

$$
\begin{gathered}
\hat{A}_{2}:=\left\langle E_{i j}^{(\hat{A})}+E_{i+m, j+m}^{(\hat{A})}, E_{p q}^{(\hat{A})}+E_{p+m, q-m}^{(\hat{A})}\right| k+l+1 \leq i, j, p \leq k+l+m \\
k+l+m+1 \leq q \leq k+l+2 m\rangle \cong M_{m}(F \oplus t F) \\
\hat{A}_{3}:=\left\langle E_{i j}^{(\hat{A})} \mid k+l+2 m+1 \leq i, j \leq k+l+2 m+r+s\right\rangle \cong M_{r, s}
\end{gathered}
$$

and its Jacobson radical is generated as a two-sided ideal by the homogeneous elements of degree zero $w_{12}^{(\hat{A})}:=E_{1, k+l+1}^{(\hat{A})}$ and $w_{23}^{(\hat{A})}:=E_{k+l+1, k+l+2 m+1}^{(\hat{A})}$. Finally, since for $w_{12}^{(\hat{A})}$ and $w_{23}^{(\hat{A})}$ and the homogeneous (minimal) idempotents $e_{1}^{(\hat{A})}:=E_{11}^{(\hat{A})} \in \hat{A}_{1}, e_{2}^{(\hat{A})}:=E_{k+l+1, k+l+1}^{(\hat{A})}+E_{k+l+m+1, k+l+m+1}^{(\hat{A})} \in \hat{A}_{2}$ and $e_{3}^{(\hat{A})}:=E_{k+l+2 m+1, k+l+2 m+1}^{(\hat{A})} \in \hat{A}_{3}$ the relations appearing in Definition 2.1 are satisfied, we have that \hat{A} is a minimal superalgebra. Moreover the subspace \hat{A}_{13} is irreducible as an $\left(\hat{A}_{1}, \hat{A}_{3}\right)$-bimodule.

The same conclusion holds for the superalgebra \hat{B}, which has semisimple part $\hat{B}_{s s}=\hat{B}_{1} \oplus \hat{B}_{2} \oplus \hat{B}_{3}$ coinciding with that of \hat{A} (for the elements defining \hat{B} it is sufficient to replace the supscpript (\hat{A}) with (\hat{B}) and observe that, in this case, $w_{23}^{(\hat{B})}$ is homogeneous of degree 1$)$.

Lemma 4.1. If $k>l$ and $r>s$, for the minimal superalgebras $\left(\hat{A},| |_{\hat{A}}\right)$ and $\left(\hat{B},| |_{\hat{B}}\right)$ one has that $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$ and $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$. Consequently, \hat{A} and \hat{B} are not isomorphic as graded algebras.

Proof. As a first step, we prove that $T_{\mathbb{Z}_{2}}(\hat{A}) \nsubseteq T_{\mathbb{Z}_{2}}(\hat{B})$. To this end, let us consider the element of $F\langle Y \cup Z\rangle$
(6)
$f:=\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right) z_{1} \operatorname{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$
and observe that any non-zero graded evaluation of the Standard polynomials $\mathrm{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$ and $\mathrm{St}_{2(m+r)-1}\left(y_{2(m+k)+1}, \ldots, y_{2(2 m+k+r)-1}\right)$ in \hat{A} is in $J(\hat{A}) \oplus \hat{A}_{3}$ and $\hat{A}_{1} \oplus J(\hat{A})$, respectively. Therefore any nonzero graded evaluation of f in \hat{A} is in $J(\hat{A})^{2}$. In particular, it has to be a linear combination of the matrix units $E_{i j}^{(\hat{A})}$ with either $1 \leq i \leq k$ and $k+l+2 m+r+1 \leq j \leq k+l+2 m+r+s$ or $k+1 \leq i \leq k+l$ and $k+l+2 m+1 \leq j \leq k+l+2 m+r$. Now, take the polynomial

$$
\begin{equation*}
g:=\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right) f \operatorname{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right), \tag{7}
\end{equation*}
$$

where $\hat{y}_{1}, \ldots, \hat{y}_{2(s+l+1)}$ are pairwise different variables of degree zero of $F\langle Y \cup$ $Z\rangle$ not involved in f. Let $\mu: F\langle Y \cup Z\rangle \longrightarrow \hat{A}$ be a non-zero graded evaluation of g in \hat{A}. Since g is multilinear, for our aims we can assume that such an evaluation is made at a homogeneous basis of \hat{A} including the matrix units $E_{i j}^{(\hat{A})}$ of \hat{A}_{1} and \hat{A}_{3}. According to the above discussion, $\mu\left(\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right)\right)$ must be in \hat{A}_{1} and $\mu\left(\operatorname{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right)\right)$ must be in \hat{A}_{3}. Taking into account the homogeneous degree of these factors and the original assumption that $k>l$ and $r>s$, the Amitsur-Levitzki Theorem yields that $\mu\left(\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right)\right)$ is a linear combination of the matrices $E_{\alpha \beta}^{(\hat{A})}$ and $\mu\left(\operatorname{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right)\right)$ of the matrices $E_{p q}^{(\hat{A})}$, where $1 \leq \alpha, \beta \leq k$ and $k+l+2 m+1 \leq p, q \leq k+l+2 m+r$. This fact combined with the previous observations on the graded evaluations of the polynomial f allows us to conclude that g is an element of $T_{\mathbb{Z}_{2}}(\hat{A})$.

Finally, as $\left(\hat{B}_{1} \oplus \hat{B}_{12} \oplus \hat{B}_{2}\right)^{(0)}$ contains a subalgebra isomorphic to $U T(k, m)$, for every i and j such that $1 \leq i \leq k$ and $k+l+1 \leq j \leq k+l+m$ there exists a graded evaluation of $\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$ in \hat{B} equal to $E_{i j}^{(\hat{B})}$. Analogously, for every p and q such that $k+l+m+1 \leq p \leq k+l+2 m$ and $k+l+2 m+1 \leq q \leq k+l+2 m+r$ there is an evaluation of $\mathrm{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$ equal to $E_{p q}^{(\hat{B})}$. Thus, fixing integers j and p as above and $i:=l+1$ and $q:=k+l+2 m+r-s$, evaluating the variable z_{1} at $E_{j p}^{(\hat{B})}+E_{j+m, p-m}^{(\hat{B})}$ we have found a graded evaluation of the polynomial f in \hat{B} equal to $E_{l+1, k+l+2 m+r-s}^{(\hat{B})}$. Since we can find an evaluation of $\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right)$ equal to $E_{1, l+1}^{(\hat{B})}$ and one of $\operatorname{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right)$ equal to $E_{k+l+2 m+r-s, k+l+2 m+r}^{(\hat{B})}$, we have exhibited a graded evaluation of
the polynomial g in \hat{B} equal to $E_{1, k+l+2 m+r}^{(\hat{B})}$, and the desired conclusion holds.

On the other hand, the same arguments used above allow us to conclude that the polynomial

$$
\Gamma:=\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right) \delta \operatorname{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right),
$$

where
$\delta:=\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right) y_{2(m+k)} \operatorname{St}_{2(m+r)-1}\left(y_{2(m+k)+1}, \ldots, y_{2(2 m+k+r)-1}\right)$
and $\hat{y}_{1}, \ldots, \hat{y}_{2(s+l+1)}$ are pairwise different elements of degree zero of $F\langle Y \cup$ $Z\rangle$ not involved in δ, is in $T_{\mathbb{Z}_{2}}(\hat{B}) \backslash T_{\mathbb{Z}_{2}}(\hat{A})$, and this completes the proof.

We prove now that the graded algebras \hat{A} and \hat{B} are, up to isomorphism, the unique elements of the class of minimal superalgebras that we have considered until now. Furthermore we provide the classification of all the minimal superalgebras whose maximal semisimple homogeneous subalgebra coincides with $\left(A_{1} \oplus A_{2} \oplus A_{3}\right)$, as claimed in Theorem 2.5.

Proof of Theorem 2.5. (a) Continuing to use the notation introduced at the beginning of the section, let us consider the elements

$$
u_{12}:=w_{12} \rho_{2}-w_{12} \bar{\rho}_{2} \quad \text { and } \quad u_{23}:=\rho_{2} w_{23}-\bar{\rho}_{2} w_{23}
$$

of the minimal superalgebra A. When $\left|w_{12}\right|=\left|w_{23}\right|=1$, both of them are of degree 0 and, from the fact that $u_{12} u_{23}=w_{12} w_{23} \neq 0_{A}$, it is easily seen that the subalgebra of A generated by A_{1}, A_{2} and A_{3} and u_{12} and u_{23} is a minimal superalgebra coinciding with A. In the same manner, if $\left|w_{12}\right|=1$ and $\left|w_{23}\right|=0, u_{12}$ has degree 0 , whereas u_{23} has degree 1 . In this case if we replace the elements w_{12} and w_{23} with u_{12} and u_{23} respectively, we also obtain the superalgebra A. Therefore we conclude that it is always possible to assume that $\left|w_{12}\right|=0$, and hence we are left with two possibilities (depending upon $\left|w_{23}\right|$).

At this point, take a minimal superalgebra B with maximal semisimple homogeneous subalgebra $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ coinciding with $A_{s s}$ and homogeneous radical elements z_{12} (which, as with w_{12}, we can assume of degree zero) and z_{23} such that $\left|z_{23}\right|=\left|w_{23}\right|$ and B_{13} is irreducible as a (B_{1}, B_{3})-bimodule. We aim to show that A and B are isomorphic as graded algebras. Now, for every $1 \leq j \leq 3$, call f_{j} the minimal idempotents (of degree zero) of B_{j} and write f_{2} as $f_{2}=\nu_{2}+\bar{\nu}_{2}$, where ν_{2} is the the nonhomogeneous minimal idempotent of the minimal two-sided ideal \mathcal{J}_{2} of B_{2} such that $B_{2}=\mathcal{J}_{2} \oplus \overline{\mathcal{J}}_{2}$ (we are regarding B as an algebra with action of an automorphism ϕ_{B} of order 2 and setting $\overline{\mathcal{J}}_{2}:=\phi_{B}\left(J_{2}\right)$ and $\left.\bar{\nu}_{2}:=\phi_{B}\left(\nu_{2}\right)\right)$. Let us consider the superalgebra isomorphisms

$$
\Psi_{j j}: A_{j} \longrightarrow B_{j}
$$

such that $\Psi_{j j}\left(e_{j}\right)=f_{j}$ if $j \neq 2$ and $\Psi_{22}\left(\rho_{2}\right)=\nu_{2}$ (and hence $\left.\Psi_{22}\left(\bar{\rho}_{2}\right)=\bar{\nu}_{2}\right)$. Applying the same arguments as in Section 3, for every $1 \leq i<j \leq 3$ one constructs a vector space isomorphism $\Psi_{i j}$ from the subspace $A_{i j}$ of A
into the subspace $B_{i j}$ of B, which clearly preserves the \mathbb{Z}_{2}-grading when $(i, j) \neq(1,3)$. If $(i, j)=(1,3)$ for the map

$$
\Psi_{13}: A_{1} w_{12} \rho_{2} w_{23} A_{3} \longrightarrow B_{1} z_{12} \nu_{2} z_{23} B_{3}, a_{1} w_{12} \rho_{2} w_{23} a_{3} \longmapsto \Psi_{11}\left(a_{1}\right) z_{12} \nu_{2} z_{23} \Psi_{33}\left(a_{3}\right)
$$ invoking (5) one has that

$$
\begin{aligned}
\Psi_{13}\left(\phi\left(w_{12} \rho_{2} w_{23}\right)\right) & =\Psi_{13}\left((-1)^{\left|w_{23}\right|} w_{12} \bar{\rho}_{2} w_{23}\right)=\Psi_{13}\left((-1)^{\left|w_{23}\right|} w_{12} \rho_{2} w_{23}\right) \\
& =(-1)^{\left|z_{23}\right|} z_{12} \nu_{2} z_{23}=(-1)^{\left|z_{23}\right|} z_{12} \bar{\nu}_{2} z_{23} \\
& =\phi_{B}\left(z_{12} \nu_{2} z_{23}\right)=\phi_{B}\left(\Psi_{13}\left(w_{12} \rho_{2} w_{23}\right)\right),
\end{aligned}
$$

from which it follows that the \mathbb{Z}_{2}-grading is still preserved.
Since $A=\oplus_{1 \leq i \leq j \leq 3} A_{i j}$ and $B=\oplus_{1 \leq i \leq j \leq 3} B_{i j}$, these maps induce a vector space isomorphism from A into B, which is easily verified (the details are left to the reader) to actually be a superalgebra isomorphism.

Therefore we are left with at most two isomorphism-types for the superalgebras we are considering. From the fact that the previously constructed minimal non-isomorphic superalgebras, \hat{A} and \hat{B}, satisfy all the assumptions of the theorem, the desired conclusion follows.
(b) Assume that A_{13} is still irreducible but $k=l$ (the case when $r=s$ can be analogously treated, and for this reason we omit it). As the first part of the proof of (a) does not depend on the assumption on the pairs of integers (k, l) and (r, s), we conclude that A must be isomorphic either to \hat{A} or to \hat{B}. Now, set $n:=2 k+2 m+r+s$ and equip the complete matrix algebra M_{n} with the gradings induced by the same n-tuples defining the gradings $\left.\left|\left.\right|_{\hat{A}}\right.$ on \hat{A} and $|\right|_{\hat{B}}$ on \hat{B}. Let us denote these superalgebras by $\left(M_{n},| |_{\hat{A}}\right)$ and $\left(M_{n},| |_{\hat{B}}\right)$, respectively. Consider the bijection σ on the set $\{1, \ldots, n\}$ defined by

$$
\sigma(i):= \begin{cases}i+k & \text { if } 1 \leq i \leq k \\ i-k & \text { if } k+1 \leq i \leq 2 k \\ i+m & \text { if } 2 k+1 \leq i \leq 2 k+m \\ i-m & \text { if } 2 k+m+1 \leq i \leq 2 k+2 m \\ i & \text { if } 2 k+2 m+1 \leq i \leq n\end{cases}
$$

and the endomorphism $\psi: M_{n} \longrightarrow M_{n}$ defined on the matrix units of M_{n} as

$$
\psi\left(E_{i j}\right):=E_{\sigma(i), \sigma(j)} .
$$

It is easily seen that ψ is a superalgebra isomorphism from $\left(M_{n},| |_{\hat{A}}\right)$ into M_{n} endowed with the grading induced by the n-tuple

$$
(\underbrace{1, \ldots,}_{k \text { times }}, \underbrace{0, \ldots,}_{k \text { times }}, \underbrace{1, \ldots,}_{m \text { times }}, \underbrace{0, \ldots,}_{m \text { times }}, \underbrace{0, \ldots, \ldots}_{r \text { times }}, \underbrace{1, \ldots, 1}_{s \text { times }}),
$$

which is actually $\left(M_{n},| |_{\hat{B}}\right)$. In particular, the image $\psi(\hat{A})$ of the homogeneous subalgebra \hat{A} of $\left(M_{n},| |_{\hat{A}}\right)$ coincides with $\left(\hat{B},| |_{\hat{B}}\right)$, and we are done.
(c) Using the arguments presented in the proof of part (a), replacing the element w_{12} with $u_{12}:=w_{12} \rho_{2}-w_{12} \bar{\rho}_{2}$ if $\left|w_{12}\right|=1$ and w_{23} with $u_{23}:=\rho_{2} w_{23}-\bar{\rho}_{2} w_{23}$ again if $\left|w_{23}\right|=1$, we can always assume that the radical elements of A appearing in Definition 2.1 have degree zero (we notice
that, since A_{13} is not irreducible, we also have $u_{12} w_{23} \neq 0_{A}$ and $w_{12} u_{23} \neq$ 0_{A}). At this stage, the same line of reasoning applied in the proof of (a) allows us to conclude that there exists one isomorphism-type for the minimal superalgebra A (the easy details are left to the reader).

As we did above with the superalgebras \hat{A} and \hat{B}, we want to construct a concrete example of superalgebra isomorphic to every minimal superalgebra A with maximal semisimple part equal to $A_{1} \oplus A_{2} \oplus A_{3}$ such that A_{13} is not irreducible. To this end, let us consider the subalgebra of $U T(2(k+$ $l), 2 m, 2(r+s))$ consisting of matrices of the form

$$
\left(\begin{array}{cccccc}
K & 0 & I_{1} & I_{2} & I_{3} & I_{4} \\
0 & K & I_{2} & I_{1} & I_{4} & I_{3} \\
0 & 0 & L & P & I_{5} & I_{6} \\
0 & 0 & P & L & I_{6} & I_{5} \\
0 & 0 & 0 & 0 & Q & 0 \\
0 & 0 & 0 & 0 & 0 & Q
\end{array}\right)
$$

where $K \in M_{k+l}, L, P \in M_{m}, Q \in M_{r+s}, I_{1}, I_{2} \in M_{(k+l) \times m}, I_{3}, I_{4} \in$ $M_{(k+l) \times(r+s)}, I_{5}, I_{6} \in M_{m \times(r+s)}$. We endow it with the grading induced by the $2(k+l+m+r+s)$-tuple

$$
(\underbrace{0, \ldots, 0}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }}, \underbrace{1, \ldots, 1}_{k \text { times }}, \underbrace{0, \ldots, 0}_{l \text { times }} \underbrace{0, \ldots, 0}_{m \text { times }}, \underbrace{1, \ldots, 1}_{m \text { times }}, \underbrace{0, \ldots, 0}_{r \text { times }}, \underbrace{1, \ldots, 1}_{s \text { times }}, \underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{s \text { times }}) .
$$

Let us denote this \mathbb{Z}_{2}-graded algebra by \check{A}. It is more convenient to represent each element of \check{A} as

	k	l	k	l	m	m	r	s	r	s
						\check{I}_{0}	\check{I}_{1}	I_{0}^{\prime}	I_{1}^{\prime}	$I_{1}^{\prime \prime}$
l										
l										
k										
l										
m										
m										
r										
K_{0}	K_{1}	0	0	$I_{0}^{\prime \prime}$						
\tilde{K}_{1}	\tilde{K}_{0}	0	0	\check{I}_{1}^{\prime}	\check{I}_{0}^{\prime}	$I_{1}^{\prime \prime \prime}$	$I_{0}^{\prime \prime \prime}$	\tilde{I}_{0}	\tilde{I}_{1}	
0	0	K_{0}	K_{1}	\check{I}_{1}	\check{I}_{0}	$I_{1}^{\prime \prime}$	$I_{0}^{\prime \prime}$	I_{0}^{\prime}	I_{1}^{\prime}	
0	0	\tilde{K}_{1}	\tilde{K}_{0}	\check{I}_{0}^{\prime}	\check{I}_{1}^{\prime}	\tilde{I}_{0}	\tilde{I}_{1}	$I_{1}^{\prime \prime \prime}$	$I_{0}^{\prime \prime \prime}$	
0	0	0	0	L_{0}	P_{1}	\hat{I}_{0}	\hat{I}_{1}	\hat{I}_{1}^{\prime}	\tilde{I}_{0}^{\prime}	
0	0	0	0	P_{1}	L_{0}	\hat{I}_{1}^{\prime}	\hat{I}_{0}^{\prime}	\hat{I}_{0}	\hat{I}_{1}	
0	0	0	0	0	0	Q_{0}	Q_{1}	0	0	
0	0	0	0	0	0	\tilde{Q}_{1}	\tilde{Q}_{0}	0	0	
0	0	0	0	0	0	0	0	Q_{0}	Q_{1}	
0	0	0	0	0	0	0	0	\tilde{Q}_{1}	\tilde{Q}_{0}	

where the subscripted indices 0 and 1 denote the homogeneous degrees of the elements.

If $E_{i j}^{(\tilde{A})}$ are the matrix units of \check{A}, it is easily seen that the maximal semisimple homogeneous subalgebra of \check{A} is equal to $\check{A}_{1} \oplus \check{A}_{2} \oplus \check{A}_{3}$ where

$$
\begin{gathered}
\check{A}_{1}:=\left\langle E_{i j}^{(\check{A})}+E_{i+k+l, j+k+l}^{(\check{A})} \mid 1 \leq i, j \leq k+l\right\rangle \cong M_{k, l} \\
\check{A}_{2}:=\left\langle E_{i j}^{(\check{A})}+E_{i+m, j+m}^{(\check{A})}, E_{p q}^{(\check{A})}+E_{p+m, q-m}^{(\check{A})}\right| 2(k+l)+1 \leq i, j, p \leq 2(k+l)+m, \\
2(k+l)+m+1 \leq q \leq 2(k+l+m)\rangle \cong M_{m}(F \oplus t F) \\
16
\end{gathered}
$$

$\check{A}_{3}:=\left\langle E_{i j}^{(\check{A})}+E_{i+r+s, j+r+s}^{(\check{A})} \mid 2(k+l+m)+1 \leq i, j \leq 2(k+l+m)+r+s\right\rangle \cong M_{r, s}$ and its Jacobson radical is generated as a two-sided ideal by the homogeneous elements of degree zero $w_{12}^{(\check{A})}:=E_{1,2(k+l)+1}^{(\check{A})}+E_{k+l+1,2(k+l)+m+1}^{(\check{A})}$ and $w_{23}^{(\check{A})}:=E_{2(k+l)+1,2(k+l+m)+1}^{(\check{A})}+E_{2(k+l)+m+1,2(k+l+m)+r+s+1}^{(\check{A})}$. Finally, since for $w_{12}^{(\check{A})}$ and $w_{23}^{(\check{A})}$ and the homogeneous (minimal) idempotents $e_{1}^{(\breve{A})}:=$ $E_{11}^{(\check{A})}+E_{k+l+1, k+l+1}^{(\check{A})} \in \check{A}_{1}, e_{2}^{(\check{A})}:=E_{2(k+l)+1,2(k+l)+1}^{(\check{A})}+E_{2(k+l)+m+1,2(k+l)+m+1}^{(\check{A})} \in$ \check{A}_{2} and $e_{3}^{(\check{A})}:=E_{2(k+l+m)+1,2(k+l+m)+1}^{(\check{A})}+E_{2(k+l+m)+r+s+1,2(k+l+m)+r+s+1}^{(\check{A})} \in$ \check{A}_{3} the relations appearing in Definition 2.1 are satisfied, we have that \check{A} is a minimal superalgebra. Furthermore \check{A}_{13} is not irreducible as an $\left(\check{A}_{1}, \check{A}_{3}\right)$ bimodule, and we are done.

We are now in a position to state the main result of this paper which was claimed in Theorem 2.6.

Proof of Theorem 2.6. (a) After applying the same arguments as in the proof of Theorem 2.4, it remains only to consider a minimal superalgebra $B=B_{s s}+J(B)$ such that $B_{s s}=B_{1} \oplus B_{2} \oplus B_{3}$ with $B_{i}=A_{i}$ and homogeneous minimal idempotents $f_{i} \in B_{i}$ for every $1 \leq i \leq 3$, its Jacobson radical is generated by homogeneous elements z_{12} and z_{23} with $z_{12} z_{23} \neq 0_{B}$ and $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$. It is sufficient to show that $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$.

To this end, we observe that we can assume that B_{13} is irreducible as well. In fact, suppose that this is not the case. Hence, writing as usual f_{2} as $\nu_{2}+\bar{\nu}_{2}$, one has that

$$
B_{13}=B_{1} z_{12} \nu_{2} z_{23} B_{3} \oplus B_{1} z_{12} \bar{\nu}_{2} z_{23} B_{3}
$$

as both the summands are irreducible (B_{1}, B_{3})-bimodules. Let I be the ideal of B generated by $z_{12} \nu_{2} z_{23}-z_{12} \bar{\nu}_{2} z_{23}$, which is obviously homogeneous. Since $I=B_{1}\left(z_{12} \nu_{2} z_{23}-z_{12} \bar{\nu}_{2} z_{23}\right) B_{3}$ is irreducible as a $\left(B_{1}, B_{3}\right)$-bimodule, $I \neq B_{13}$. Now, for the superalgebra $B^{\prime}:=B / I$ it is easily seen that its maximal semisimple homogeneous subalgebra coincides with $B_{s s}$ and, since $I \subseteq B_{13}$, its Jacobson radical is equal to $J(B) / I$. Furthermore $\left(z_{12}+I\right) \cdot\left(z_{23}+I\right) \neq 0_{B^{\prime}}$, since $z_{12} z_{23}$ is not in I. Therefore B^{\prime} is a minimal superalgebra such that B_{13}^{\prime} is irreducible and

$$
T_{\mathbb{Z}_{2}}(B) \subseteq T_{\mathbb{Z}_{2}}\left(B^{\prime}\right)
$$

As $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$, for our aims it is sufficient to replace the superalgebra B with B^{\prime}.

If $k>l$ and $r>s$ Lemma 4.1 and Theorem 2.5 (a) yield that A and B are isomorphic either to \hat{A} or to \hat{B}. In particular, from Lemma 4.1 it follows that the containment $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$ implies that A is isomorphic to B as a graded algebra and, consequently, $T_{\mathbb{Z}_{2}}(A)=T_{\mathbb{Z}_{2}}(B)$.

Finally, assume that either $k=l$ or $r=s$. According to Theorem 2.5 (b), A must be isomorphic to B as a superalgebra, and hence they satisfy the same polynomial identities.
(b) Assume that the $\left(A_{1}, A_{3}\right)$-bimodule A_{13} is not irreducible and, first, that either $k=l$ or $r=s$. We aim to show that $\operatorname{supvar}(A)$ is minimal. For this purpose, as in the proof of part (a) and Theorem 2.4, take a minimal superalgebra $B=B_{s s}+J(B)$ such that $T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}(B)$ and $B_{s s}=A_{1} \oplus$ $A_{2} \oplus A_{3}$. We have to prove that A and B satisfy the same graded polynomial identities.

If B_{13} is not irreducible as an $\left(A_{1}, A_{3}\right)$-bimodule, Theorem 2.5 (c) forces A to be isomorphic to B as a graded algebra, and we are done.

Therefore assume that B_{13} is irreducible and $k=l$ (analogous arguments can be used when $r=s$). By invoking again Theorem 2.5 (b) and its proof one has that B is isomorphic to \hat{A}. This superalgebra can be written as

$$
\left(\begin{array}{cc}
V & U \\
0 & W
\end{array}\right)
$$

where $V=M_{k, l}, U=M_{(k+l) \times(2 m+r+s)}$ and $W \subseteq M_{2 m+r+s}$ is the subalgebra of \hat{A} generated by \hat{A}_{2}, \hat{A}_{3} and $w_{23}^{(\hat{A})}$. Since $k=l$, from Proposition 5.3 of [2] we deduce that V is \mathbb{Z}_{2}-regular and Theorem 4.5 of [2] yields that the ideal of graded polynomial identities satisfied by this algebra is equal to $T_{\mathbb{Z}_{2}}(V) \cdot T_{\mathbb{Z}_{2}}(W)=T_{\mathbb{Z}_{2}}\left(A_{1}\right) \cdot T_{\mathbb{Z}_{2}}(W)$. But, according to the discussion of Section 2 of [3], in any event W is a minimal superalgebra with maximal semisimple homogeneous subalgebra coinciding with $A_{2} \oplus A_{3}$. At this stage, from Theorem 5.3 of $[4]$ one has that $T_{\mathbb{Z}_{2}}(W)=T_{\mathbb{Z}_{2}}\left(A_{2}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{3}\right)$, and hence

$$
T_{\mathbb{Z}_{2}}(B)=T_{\mathbb{Z}_{2}}\left(A_{1}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{2}\right) \cdot T_{\mathbb{Z}_{2}}\left(A_{3}\right)
$$

As the second term of the above equality is contained in $T_{\mathbb{Z}_{2}}(A)$, the desired conclusion holds.

Conversely, assume that $k>l$ and $r>s$. The final target is to construct a minimal superalgebra A^{\prime} such that $T_{\mathbb{Z}_{2}}(A) \varsubsetneqq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)$ and $\exp _{\mathbb{Z}_{2}}(A)=$ $\exp _{\mathbb{Z}_{2}}\left(A^{\prime}\right)$. To this end, let I be the ideal of A generated by the element $w_{12} \rho_{2} w_{23}-w_{12} \bar{\rho}_{2} w_{23}$, which is clearly homogeneous, and set $A^{\prime}:=A / I$. Obviously,

$$
T_{\mathbb{Z}_{2}}(A) \subseteq T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)
$$

As seen in the proof of part (a) (in that case for the algebra B), A^{\prime} is a minimal superalgebra with maximal semisimple homogeneous subalgebra equal to $A_{1} \oplus A_{2} \oplus A_{3}$. Furthermore, if ϕ^{\prime} is the action induced by ϕ on A^{\prime}, one has that

$$
\phi^{\prime}\left(w_{12} \rho_{2} w_{23}+I\right)=w_{12} \bar{\rho}_{2} w_{23}+I=w_{12} \rho_{2} w_{23}+I
$$

(we have supposed that $\left|w_{12}\right|=\left|w_{23}\right|=0$). This means that A_{13}^{\prime} is irreducible. Therefore, A^{\prime} is isomorphic to the superalgebra \hat{A}.

At this stage, take the polynomials f and g defined in (6) and (7), respectively. We have shown there that $g \in T_{\mathbb{Z}_{2}}(\hat{A})=T_{\mathbb{Z}_{2}}\left(A^{\prime}\right)$. We claim that it is not a graded polynomial identity for the superalgebra \check{A} described after the proof of Theorem 2.5, and hence for A as they are isomorphic. In fact, for every i and j such that $1 \leq i \leq k$ and $2(k+l)+1 \leq j \leq$ $2(k+l)+m$ there exists a graded evaluation of $\operatorname{St}_{2(m+k)-1}\left(y_{1}, \ldots, y_{2(m+k)-1}\right)$
in \check{A} equal to $E_{i j}^{(\check{A})}+E_{i+k+l, j+m}^{(\check{A})}$. Analogously, for every p and q such that $2(k+l)+1 \leq p \leq 2(k+l)+m$ and $2(k+l+m)+1 \leq q \leq 2(k+$ $l+m)+r$ there is an evaluation of $\mathrm{St}_{2(m+r)-1}\left(y_{2(m+k)}, \ldots, y_{2(2 m+k+r-1)}\right)$ equal to $E_{p q}^{(\breve{A})}+E_{p+m, q+r+s}^{(\check{A})}$. Thus, fixing integers j and p as above and $i:=l+1$ and $q:=2(k+l+m)+r-s$, evaluating the variable z_{1} at $E_{j+m, p}^{(\tilde{A})}+E_{j, p+m}^{(\tilde{A})}$, we have found a graded evaluation of the polynomial f in \check{A} equal to $E_{l+1,2(k+l+m+r)}^{(\check{A})}+E_{k+2 l+1,2(k+l+m)+r-s}^{(\check{A})}$. Since we can find an evaluation of $\operatorname{St}_{2 l+1}\left(\hat{y}_{1}, \ldots, \hat{y}_{2 l+1}\right)$ equal to $E_{1, l+1}^{(\tilde{A})}+E_{k+l+1, k+2 l+1}^{(\check{A})}$ and one of $\mathrm{St}_{2 s+1}\left(\hat{y}_{2 l+2}, \ldots, \hat{y}_{2(s+l+1)}\right)$ equal to $E_{2(k+l+m)+r-s, 2(k+l+m)+r}^{(\check{A})}+$ $E_{2(k+l+m+r), 2(k+l+m+r)+s}^{(\breve{A})}$, the claim is confirmed. Therefore g is in $T_{\mathbb{Z}_{2}}\left(A^{\prime}\right) \backslash$ $T_{\mathbb{Z}_{2}}(A)$, and this completes the proof.

Acknowledgements. The authors are grateful to the referee for the careful reading of the paper and his/her useful comments that have improved its presentation.

References

[1] F. Benanti, A. Giambruno, M. Pipitone, Polynomial identities on superalgebras and exponential growth, J. Algebra 269 (2003), 422-438.
[2] O.M. Di Vincenzo, R. La Scala, Block-triangular matrix algebras and factorable ideals of graded polynomial identities, J. Algebra 279 (2004), 260-279.
[3] O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli, Minimal supervarieties with factorable ideal of graded polynomial identities, J. Pure Appl. Algebra 220 (2016), 1316-1330.
[4] O.M. Di Vincenzo, E. Spinelli, On some minimal supervarieties of exponential growth, J. Algebra 368 (2012), 182-198.
[5] A. Giambruno, A. Regev, Wreath products and P.I. algebras, J. Pure Appl. Algebra 35 (1985), 133-149.
[6] A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155.
[7] A. Giambruno, M. Zaicev, Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999), 221-243.
[8] A. Giambruno, M. Zaicev, Codimension growth and minimal superalgebras, Trans. Amer. Math. Soc. 355 (2003), 293-308.
[9] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, Vol. 122, Amer. Math. Soc., Providence, RI, 2005.
[10] A.R. Kemer, Ideals of identities of associative algebras, Translation of Math Monographs, Vol. 87, Amer. Math. Soc., Providence, RI, 1991.
[11] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.

ONOFRIO MARIO DI VINCENZO

Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata
Via dell'Ateneo Lucano, 10
85100-POTENZA (Italy)
e-mail: onofrio.divincenzo@unibas.it

VIVIANE RIBEIRO TOMAZ DA SILVA
Departamento de Matemática, Instituto de Ciências Exatas Universidade Federal de Minas Gerais 30161-970 BELO HORIZONTE (Brazil)
e-mail: viviane@mat.ufmg.br

ERNESTO SPINELLI
Dipartimento di Matematica "G. Castelnuovo"
Università degli Studi di Roma "La Sapienza"
Piazzale Aldo Moro 5
00185-ROMA (Italy)
e-mail: spinelli@mat.uniroma1.it

[^0]: ${ }^{1}$ The first named author was supported by RIL of Università della Basilicata. The second named author was partially supported by CNPq - Brasil grant 305339/2013-3 and "Para mulheres na Ciência" (L'ORÉAL-ABC-UNESCO).

