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Abstract. It has been shown that in characteristic zero the generators

of the minimal supervarieties of finite basic rank belong to the class of

minimal superalgebras introduced by Giambruno and Zaicev in 2003.

In the present paper the complete list of minimal supervarieties gener-

ated by minimal superalgebras whose maximal semisimple homogeneous

subalgebra is the sum of three graded simple algebras is provided. As a

consequence, we negatively answer the question of whether any minimal

superalgebra generates a minimal supervariety.
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1. Introduction

Let F be a field of characteristic zero. A quantitative measure of the
polynomial identities satisfied by an associative F -algebra A is given by the
sequence of its codimensions {cn(A)}n≥1, whose n-th term is the dimension
of the space of multilinear polynomials in n variables in the corresponding
relatively free algebra of countable rank. It was introduced by Regev in
the seminal paper [11], where it was proved that when A satisfies a non-
zero polynomial identity (in the sequel we shall refer to these algebras as
PI algebras) {cn(A)}n≥1 is exponentially bounded. Later a fundamental
contribution of Giambruno and Zaicev ([6] and [7]) showed that

exp(A) := lim
m→+∞

m
√
cm(A)

exists and is a non-negative integer, which is called the exponent of A.
This provides an integral scale allowing us to measure the growth of

any variety and in a natural manner has addressed the research towards
a classification of varieties according to the asymptotic behaviour of their
codimensions. In this direction, among varieties of some fixed exponent
a prominent role is played by the minimal ones, namely those varieties of
exponent d such that every proper subvariety has exponent strictly less than
d. In [8] it was proved that a variety of exponential growth is minimal if,
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and only if, it is generated by the Grassmann envelope of a so called minimal
superalgebra.

More generally, superalgebras are a key ingredient in the structure theory
of PI algebras, as shown by Kemer in the solution of the Specht Problem
([10]). From his work also the relevance of their graded polynomial iden-
tities appears clear and this has deeply motivated their study. The point
of view we are going to explore here involves seeking information about the
set of graded identities of a F -algebra A endowed with a Z2-grading, which
we denote by TZ2(A). From an algebraic point of view, it is a TZ2-ideal of
the free F -superalgebra F 〈Y ∪Z〉, namely a two-sided ideal of F 〈Y ∪Z〉 in-
variant under every graded endomorphism, which is completely determined
by multilinear polynomials it contains (as we are working in characteristic
zero). In particular, extending into this setting the approach of Regev, we
are interested in the graded codimensions {cZ2

n (A)}n≥1 of A, whose n-th
term is defined as the dimension of the space of multilinear Z2-graded poly-
nomials in n variables in the corresponding relatively free Z2-graded algebra
of countable rank.

In [5] it was proved that this sequence is exponentially bounded if, and
only if, A is a PI algebra. Under the extra assumption that A is also finitely
generated, in [1] the authors stated that

expZ2
(A) := lim

m→+∞
m

√
cZ2
m (A)

exists and is a non-negative integer, which is called the Z2-graded exponent
or superexponent of A.

By virtue of this result, as in the ordinary case, it becomes natural and
interesting to investigate minimal varieties of PI associative superalgebras
(or supervarieties) of finite basic rank (that is, generated by a finitely gener-
ated superalgebra satisfying an ordinary polynomial identity) of fixed graded
exponent. The starting point for the problem we are going to focus in the
present paper on is the following statement in which minimal superalgebras
come again into the picture.

Theorem 1.1 (Proposition 3.2 of [4]). Let Vsup be a supervariety of finite
basic rank. If Vsup is minimal of superexponent d ≥ 2, then Vsup is generated
by a suitable minimal superalgebra.

According to this theorem, the problem of characterizing the minimal
supervarieties of finite basic rank of exponential growth is reduced to de-
ciding whether any minimal superalgebra generates a minimal supervariety.
This problem is still open and its possible solution seems to be more in-
volved than that of the ungraded case. In more detail, a minimal super-
algebra A is finite-dimensional and defined on an algebraically closed field.
Hence, by the generalization of the Wedderburn-Malcev Theorem we can
write A = Ass + J(A), where Ass is a maximal semisimple subalgebra of A
homogeneous in the Z2-grading and J(A) is its Jacobson radical (which is
homogeneous as well). Also Ass can be written as the direct sum of graded
simple algebras which can be of two types: either simple or non-simple as
algebras. It has been proved that in the case in which the sequence of the
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graded simple components of Ass has in some sense a regular distribution,
the supervariety generated by A is minimal (Theorems 4.7 and 5.4 of [4] and
3.6 of [3]).

In spite of this positive result, in the present article we provide a fam-
ily of minimal superalgebras not generating minimal supervarieties. This is
done by characterizing all minimal supervarieties generated by minimal su-
peralgebras whose maximal semisimple homogeneous subalgebra has three
graded simple summands.

2. Preliminaries and Announcement of the Main Results

Throughout the rest of the paper, unless otherwise stated, F is a field
of characteristic zero and all the algebras are assumed to be associative
and to have the same ground field F . For any pair of positive integers s
and t the symbol Ms×t means the space of all matrices with s rows and t
columns over F and set Ms := Ms×s; whereas, if m1, . . . ,mn is a sequence of
positive integers, let UT (m1, . . . ,mn) be the upper block triangular matrix
algebra of size m1, . . . ,mn. Finally, if F 〈X〉 is the free associative algebra
on a countable set X := {x1, x2, . . .} over F , for any positive integer q the
Standard polynomial in q variables Stq(x1, . . . , xq) is the element of F 〈X〉
defined as ∑

σ∈Sq

sgn(σ)xσ(1)xσ(2) · · ·xσ(q).

An algebra A is a Z2-graded algebra or a superalgebra if it has a vec-
tor space decomposition A = A(0) ⊕ A(1) such that A(i)A(j) ⊆ A(i+j). The
elements of A(0) are called homogeneous of degree 0 and those of A(1) homo-
geneous of degree 1. An element w of A is homogeneous if it is homogeneous
of degree 0 or 1 (and denote its degree by |w|), whereas a subalgebra or an

ideal V ⊆ A is homogeneous if V = (V ∩A(0))⊕(V ∩A(1)). The superalgebra
A is called simple (or Z2-simple) if the multiplication is non-trivial and it
has no non-trivial homogeneous ideals. In this case, we shall also refer to A
as a graded simple algebra.

Let F 〈Y ∪ Z〉 be the free associative algebra on the disjoint countable
sets of variables Y := {y1, y2, . . .} and Z := {z1, z2, . . .}. It has a natural
superalgebra structure if we require that the variables from Y have degree 0
and those from Z have degree 1. The superalgebra F 〈Y ∪Z〉 is said to be the
free superalgebra over F . An element f(y1, . . . , ym, z1, . . . , zn) of F 〈Y ∪ Z〉
is a Z2-graded polynomial identity for a superalgebra A = A(0) ⊕ A(1) if
f(a1, . . . , am, b1, . . . , bn) = 0A for every a1, . . . , am ∈ A(0) and b1, . . . , bn ∈
A(1). Given a TZ2-ideal I of F 〈Y ∪ Z〉, the variety of superalgebras or su-
pervariety Vsup associated to I is the class of all F -superalgebras whose
TZ2-ideals of graded polynomial identities contain I. The TZ2-ideal I is
denoted by TZ2(Vsup). The supervariety Vsup is generated by the superal-
gebra A if TZ2(Vsup) = TZ2(A), and in this case we write Vsup = supvar(A).

Furthermore, set expZ2
(Vsup) := expZ2

(A) = limm→+∞
m

√
cZ2
m (A), the su-

perexponent of the supervariety Vsup (we recall that the m-th Z2-graded
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codimension cZ2
m (A) of A is the dimension of the vector space P sup

m

P sup
m ∩TZ2 (A)

,

where P supm is the space of multilinear polynomials of degree m of F 〈Y ∪Z〉
in the variables y1, . . . , ym, z1, . . . , zm).

Assume that A is a finite-dimensional superalgebra and let A = Ass +
J(A) be its Wedderburn-Malcev decomposition. Furthermore the maximal
semisimple homogeneous subalgebra Ass of A can be written as the direct
sum of graded simple algebras whose structures are well known, at least
when the ground field is algebraically closed. In fact, they must be among
the following types:

(a) Mk,l :=

(
A B
C D

)
, where k ≥ l ≥ 0, k 6= 0, A ∈ Mk, D ∈ Ml, B ∈

Mk×l and C ∈Ml×k, endowed with the grading M
(0)
k,l :=

(
A 0
0 D

)
and M

(1)
k,l :=

(
0 B
C 0

)
;

(b) Mm(F ⊕ tF ), where t2 = 1F , with grading (Mm, tMm).

Giambruno and Zaicev in [8] introduced the definition of minimal super-
algebra.

Definition 2.1. Let F be an algebraically closed field. A superalgebra A is
called minimal if it is finite-dimensional and A = Ass + J(A) where

(i) Ass = A1 ⊕ · · · ⊕An with A1, . . . , An graded simple algebras;
(ii) there exist homogeneous elements w12, . . . , wn−1,n ∈ J(A) and min-

imal homogeneous idempotents e1 ∈ A1, . . . , en ∈ An such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1 1 ≤ i ≤ n− 1

and

w12w23 · · ·wn−1,n 6= 0A;

(iii) w12, . . . , wn−1,n generate J(A) as a two-sided ideal of A.

In Lemma 3.5 of [8] it was shown that the minimal superalgebra A =
Ass + J(A) has the following vector space decomposition

(1) A =
⊕

1≤i≤j≤n
Aij ,

where A11 := A1, . . . , Ann := An and, for all i < j,

Aij := Aiwi,i+1Ai+1 · · ·Aj−1wj−1,jAj .

Moreover J(A) = ⊕i<jAij and AijAkl = δjkAil, where δjk is the Kronecker
delta. Finally, as stressed in Chapter 8 of [9], the order of the components
A1, . . . , An of Ass is important. For this reason, in the sequel we shall
tacitly agree that if Ass = A1 ⊕ · · · ⊕An, then A1J(A)A2J(A) · · ·An 6= 0A.
According to the main result of [1], expZ2

(A) = dimF (Ass).
The aim of the paper is to contribute to the classification of minimal

supervarieties of fixed graded exponent. We recall the definition.
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Definition 2.2. A variety Vsup of PI superalgebras is said to be minimal of
superexponent d if expZ2

(Vsup) = d and expZ2
(Usup) < d for every proper

subvariety Usup of Vsup.
As observed in the Introduction, in the case of finite basic rank the prob-

lem that still remains open is to characterize those minimal superalgebras
generating minimal supervarieties. In this direction the main contribution
can be summarized in the following

Theorem 2.3 (3.6 of [3]). Let A = Ass + J(A) be a minimal superalgebra.
If Ass = A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that A1, . . . , Ah
are non-simple graded simple and Ah+1, . . . , An are simple graded simple
algebras (or vice versa), then the supervariety generated by A is minimal of
superexponent dimF (A1 ⊕ · · · ⊕An).

According to the preceding theorem, the smallest possible number of
graded simple summands of the maximal semisimple homogeneous subalge-
bra of a minimal superalgebra A such that supvar(A) is not minimal is n = 3
(for the sake of completeness, we recall that the cases n = 1 and n = 2 were
originally settled in Corollary 3.5 and Theorem 5.4 of [4], respectively).
For this reason it becomes interesting to investigate what happens when
Ass = A1⊕A2⊕A3. By virtue of Theorem 2.3 the situations which remain
to be considered are when:

• A1 and A3 are non-simple graded simple and A2 is simple graded
simple;
• A1 and A3 are simple graded simple and A2 is non-simple graded

simple.

In the former case, as a consequence of the fact that the TZ2-ideals of
graded identities of non-isomorphic minimal superalgebras having the same
maximal semisimple homogeneous subalgebra coincide, we prove the follow-
ing

Theorem 2.4. Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕A2 ⊕A3 with

A1 = Mm(F ⊕ tF ), A2 = Mk,l and Mr(F ⊕ sF ).

Then A generates a minimal supervariety of superexponent dimF (A1⊕A2⊕
A3).

The latter case is more interesting and involved and it heavily depends on
the structure of the subspace A13 appearing in the decomposition (1), which
is a non-zero (A1, A3)-bimodule. A basic ingredient is the classification of
minimal superalgebras of such a type summarized in the following

Theorem 2.5. For a minimal superalgebra A = Ass+J(A) such that Ass =
A1 ⊕A2 ⊕A3 with

A1 = Mk,l, A2 = Mm(F ⊕ tF ) and A3 = Mr,s

(a) there exist two isomorphism-types (depending upon the parity of |w12|+
|w23|) if k > l and r > s and A13 is irreducible as an (A1, A3)-
bimodule;
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(b) there exists a unique isomorphism-type if A13 is irreducible as an
(A1, A3)-bimodule and either k = l or r = s;

(c) there exists a unique isomorphism-type if A13 is not irreducible as
an (A1, A3)-bimodule.

More precisely, in Section 4 we shall construct three concrete examples of
minimal superalgebras, Â, B̂ and Ǎ. We shall show that all the minimal
superalgebras as in (a) are isomorphic either to Â or to B̂, those satisfying

the conditions in (b) are again isomorphic to Â (which is, in such an event,

isomorphic to B̂) and, finally, those as in (c) are isomorphic to Ǎ.
Our main result is the following.

Theorem 2.6. Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕A2 ⊕A3 with

A1 = Mk,l, A2 = Mm(F ⊕ tF ) and A3 = Mr,s.

(a) If A13 is irreducible as an (A1, A3)-bimodule, then A generates a
minimal supervariety of superexponent dimF (A1 ⊕A2 ⊕A3);

(b) if A13 is not irreducible as an (A1, A3)-bimodule, then A generates a
minimal supervariety of superexponent dimF (A1 ⊕ A2 ⊕ A3) if, and
only if, either k = l or r = s.

3. The case in which A1 and A3 are non-simple graded simple

Assume throughout this section that A1 = Mm(F ⊕ tF ), A2 = Mk,l and
A3 = Mr(F ⊕ sF ) (where t2 = s2 = 1F ). We aim to show that any minimal
superalgebra whose maximal semisimple homogeneous subalgebra coincides
with A1 ⊕ A2 ⊕ A3 generates a minimal supervariety. To this end we need
to investigate in more detail the structure of such a superalgebra: this is
done via the language of actions of automorphisms. In fact, it is well known
that any superalgebra A can be viewed as an algebra with action of an
automorphism φ of A of order at most 2. Indeed, the homomorphism φ of
A = A(0) ⊕ A(1) defined by φ(a0) := a0 and φ(a1) := −a1 for any a0 ∈ A(0)

and a1 ∈ A(1) is an automorphism of A of order at most 2. Conversely, if
A is an algebra with an automorphism φ of order at most 2, then, setting
A(0) := {a| a ∈ A, φ(a) = a} and A(1) := {a| a ∈ A, φ(a) = −a}, A is a

superalgebra with grading (A(0), A(1)).
Let A = Ass+J(A) be a minimal superalgebra such that Ass = A1⊕A2⊕

A3. By regarding A as a φ-algebra, for i ∈ {1, 3} we can write Ai as Ai =
Ii⊕φ(Ii), where Ii is a minimal two-sided ideal of Ai, and the corresponding
homogeneous idempotents (of degree zero) ei appearing in Definition 2.1 as
ei = ρi + φ(ρi) with ρi a non-homogeneous minimal idempotent of Ii. For
simplicity, set ρ̄i := φ(ρi) and Īi := φ(Ii).

Let us consider the element w13 := w12w23 and the subspace A13 of the
decomposition (1). As for the homogeneous radical elements wj,j+1 defining
A the equality

ejwj,j+1ej+1 = ejwj,j+1 = wj,j+1ej+1 = wj,j+1

6



is satisfied, one has that

w13 = (ρ1 + ρ̄1)w12w23(ρ3 + ρ̄3)

= ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 + ρ̄1w12w23ρ3 + ρ1w12w23ρ̄3

and

A13 = A1w12A2w23A3 = A1w12e2A2e2w23A3 = A1w12w23A3.

Thus

A13 =I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3⊕
I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

As by the definition of minimal superalgebra w13 6= 0A, we deduce that
at least one of the homogeneous summands ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 and
ρ̄1w12w23ρ3 + ρ1w12w23ρ̄3 of w13 is non-zero. If just one of those is non-
zero, then we shall say in the sequel that A13 is a direct sum of two terms,
otherwise we shall refer to A13 as a direct sum of four terms.

Let us suppose that A13 is a direct sum of two terms. In particular, if
ρ1w12w23ρ3 + ρ̄1w12w23ρ̄3 6= 0A, then

(2) A13 = I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3,

otherwise

(3) A13 = I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

Set I1 := I1 and ε1 := ρ1 and

I3 :=

{
I3 if (2) occurs;
Ī3 if (3) occurs

and ε3 :=

{
ρ3 if (2) occurs;
ρ̄3 if (3) occurs.

As before, let ε̄i := φ(εi) and Īi := φ(Ii) for i ∈ {1, 3}. In any event we can
write

A13 = I1ε1w12w23ε3I3 ⊕ Ī1ε̄1w12w23ε̄3Ī3.

Furthermore let us define

v12 :=

{
ε1w12 + ε̄1w12 if |w12| = 0;
ε1w12 − ε̄1w12 otherwise

and

v23 :=

{
w23ε3 + w23ε̄3 if |w23| = 0;
w23ε3 − w23ε̄3 otherwise.

It is straightforward to check that the subalgebra ofA generated byA1, A2, A3

and the homogeneous elements v12 and v23 is a minimal superalgebra co-
inciding with A. Hence we can always assume that the radical elements
generating J(A) are of degree 0.

Proposition 3.1. There exists one isomorphism-type for a minimal super-
algebra A = (A1 ⊕ A2 ⊕ A3) + J(A) such that A13 is a direct sum of two
terms.
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Proof. Using the same terminology previously introduced for the super-
algebra A, take another minimal superalgebra B = Bss + J(B) such that
Bss = B1 ⊕ B2 ⊕ B3 with Bj = Aj for every 1 ≤ j ≤ 3 and B13 is a direct
sum of two terms. Let us call z12 and z23 the homogeneous radical elements
defining B (which we can assume to be of degree zero) and let fj ∈ Bj be
the minimal idempotents appearing in Definition 2.1. Using the same above
arguments one has that

B13 = J1ν1z12z23ν3J3 ⊕ J̄1ν̄1z12z23ν̄3J̄3,

where, for i ∈ {1, 3}, Bi = Ji ⊕ J̄i, with Ji a minimal two-sided ideal
of Bi, and νi is the non-homogeneous minimal idempotent of Ji such that
fi = νi + ν̄i (here we are regarding B as an algebra with action of an
automorphism of order 2, which we call φB to distinguish it from that of A,
and set J̄i := φB(Ji) and ν̄i := φB(νi)).

For 1 ≤ j ≤ 3, let us consider the superalgebra isomorphisms

Ψjj : Aj −→ Bj

such that Ψjj(εj) = νj (and hence Ψjj(ε̄j) = ν̄j) if j 6= 2 and Ψ22(e2) = f2.
Since I1ε1 ⊗ e2A2 is irreducible as an (I1, A2)-bimodule, the map

η : I1ε1 ⊗ e2A2 −→ I1ε1v12e2A2, a1ε1 ⊗ e2a2 7−→ a1ε1v12e2a2

is a bimodule isomorphism. In an analogous manner we define an isomor-
phism from J1ν1⊗ f2B2 into J1ν1z12f2B2. On the other hand the action of
the maps Ψ11 and Ψ22 on I1e1 and e2A2 respectively induces an isomorphism
from I1ε1 ⊗ e2A2 into J1ν1 ⊗ f2B2. The final outcome of these deductions
is that there exists a vector space isomorphism

ψ12 : I1ε1v12e2A2 −→ J1ν1z12f2B2, a1ε1v12e2a2 7−→ Ψ11(a1)ν1z12f2Ψ22(b2).

Now, as

A12 = I1ε1v12e2A2 ⊕ Ī1ε̄1v12e2A2

and

B12 = J1ν1z12f2B2 ⊕ J̄1ν̄1z12f2B2,

the map

Ψ12 : A12 −→ B12, h+ k 7−→ ψ12(h) + ψ12(k̄)

(where, obviously, h ∈ I1ε1v12e2A2, k ∈ Ī1ε̄1v12e2A2 and ψ12(k̄) := φB(ψ12(φ(k))))
is a vector space isomorphism preserving the Z2-gradings.

The same argument yields that the map

ψ23 : A2e2v23ε3I3 −→ B2f2z23ν3J3, a2e2v23ε3a3 7−→ Ψ22(a2)f2z23ν3Ψ33(a3)

induces a vector space isomorphism Ψ23, preserving the Z2-gradings, from
A23 = A2e2v23ε3I3 ⊕A2e2v23ε̄3Ī3 into B23 = B2f2z23ν3J3 ⊕B2f2z23ν̄3J̄3.

Finally, the same conclusion holds for

Ψ13 : A13 −→ B13,

a1ε1v12v23ε3a3+a′1ε̄1v12v23ε̄3a
′
3 7−→ Ψ11(a1)ν1z12z23ν3Ψ33(a3)+Ψ11(a′1)ν̄1z12z23ν̄3Ψ33(a′3).

But A = ⊕1≤i≤j≤3Aij and B = ⊕1≤i≤j≤3Bij , hence, gluing the maps
Ψij , we have actually constructed a vector space isomorphism from A into
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B preserving the Z2-gradings, which is easily seen to be a superalgebra
isomorphism. �

If we drop the assumption on the decomposition of A13 we are able to
show that non-isomorphic minimal superalgebras with the same semisimple
part satisfy the same Z2-graded polynomial identities.

Theorem 3.2. Let A1 = Mm(F ⊕ tF ), A2 = Mk,l and A3 = Mr(F ⊕ sF )
(where t2 = s2 = 1F ). Any minimal superalgebra whose maximal semisimple
homogeneous subalgebra coincides with A1⊕A2⊕A3 has the same TZ2-ideal
of graded polynomial identities.

Proof. By virtue of Proposition 3.1, if A and B are minimal superalgebras
such that Ass = A1⊕A2⊕A3 = Bss and both A13 and B13 are direct sums
of two terms, then A and B are isomorphic and, consequently, satisfy the
same graded polynomial identities. The rest of the proof involves producing
a situation of this kind.

To this end, let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕ A2 ⊕ A3 and A13 is a direct sum of four terms, namely (using
the above notations)

A13 =I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3⊕
I1ρ1w12w23ρ̄3Ī3 ⊕ Ī1ρ̄1w12w23ρ3I3.

Set H := I1ρ1w12w23ρ3I3 ⊕ Ī1ρ̄1w12w23ρ̄3Ī3, which is a two-sided ho-
mogeneous ideal of A. Let us consider the superalgebra A′ := A/H. We
observe that its maximal semisimple subalgebra A′ss coincides with Ass and,
as H ⊆ J(A), its Jacobson radical J(A′) is equal to J(A)/H. As a con-
sequence, the homogeneous elements w12 + H and w23 + H of A′ generate
J(A′). Furthermore

(w12 +H) · (w23 +H) = w12w23 +H 6= 0A′

otherwise also I1ρ1w12w23ρ̄3Ī3⊕ Ī1ρ̄1w12w23ρ3I3 should be in H, which con-
tradicts the original assumption on A13. Therefore we conclude that A′ is a
minimal superalgebra such that A′13 = A13/H is a direct sum of two terms.

Now, take the homogeneous two-sided ideal K := I1ρ1w12w23ρ̄3Ī3 ⊕
Ī1ρ̄1w12w23ρ3I3 of A. Proceeding in the same way, we obtain that A′′ :=
A/K is a minimal superalgebra such that A′′ss = Ass and A′′13 is a direct sum
of two terms. Thus, by virtue of Proposition 3.1, A′ is isomorphic to A′′.

Looking at the identities satisfied by these superalgebras, it is easily seen
that

(4) TZ2(A) ⊆ TZ2(A′) = TZ2(A′′).

On the other hand, let f ∈ F 〈Y ∪Z〉 be a graded polynomial identity for
A′. Since TZ2(A′) = TZ2(A′′), for any graded evaluation µ : F 〈Y ∪Z〉 −→ A
one has that

µ(f) ∈ H ∩K = 0A.

Therefore f is a graded polynomial identity for A. Hence TZ2(A′) ⊆ TZ2(A)
and, by virtue of (4), the equality holds. �
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As an easy consequence one has the first of the results announced in
Section 2, namely Theorem 2.4.

Proof of Theorem 2.4. Set Vsup := supvar(A) and let us consider a
subvariety Usup ⊆ Vsup such that expZ2

(Vsup) = expZ2
(Usup). Since Vsup

satisfies some Capelli identities, Usup has finite basic rank (see Theorem
11.4.3 of [9]). Hence, by a result of Kemer, Usup is generated by a finite-

dimensional superalgebra B̃. According to Lemma 8.1.4 of [9], there exists

a minimal superalgebra B such that TZ2(B̃) ⊆ TZ2(B) and expZ2
(B̃) =

expZ2
(B). Therefore TZ2(A) ⊆ TZ2(B) and expZ2

(A) = expZ2
(B) as well.

Furthermore from Lemma 3.3 of [4] we know that Bss = A1 ⊕A2 ⊕A3.
At this point, Theorem 3.2 yields that TZ2(A) = TZ2(B), and this con-

cludes the proof. �

4. The case in which A1 and A3 are simple graded simple

Throughout this section let A1 = Mk,l, A2 = Mm(F ⊕ tF ) and A3 = Mr,s

and consider a minimal superalgebra A such that Ass = A1 ⊕ A2 ⊕ A3 (for
the elements defining A we use the notation of Definition 2.1). As before,
regarding A as a φ-algebra, write A2 = I2⊕φ(I2), where I2 is a minimal two-
sided ideal of A2, and its corresponding homogeneous idempotents (of degree
zero) e2 as ρ2 +φ(ρ2) with ρ2 a non-homogeneous minimal idempotent of I2.
For simplicity, set ρ̄2 := φ(ρ2) and Ī2 := φ(I2). Using the usual arguments,
one has that

A13 = A1w12ρ2w23A3 +A1w12ρ̄2w23A3

is an (A1, A3)-bimodule such that each of its summands is an irreducible
(A1, A3)-bimodule.

We make a preliminary observation.

Remark. If the elements w12ρ2w23 and w12ρ̄2w23 are linearly dependent,
then they coincide.

Proof. Assume that there exist α, β ∈ F \ {0F } such that

αw12ρ2w23 + βw12ρ̄2w23 = 0A.

Consequently

(−1)|w12|+|w23|(αw12ρ̄2w23 + βw12ρ2w23) = 0A

as well. The combination of the above equalities yields{
αw12ρ2w23 + βw12ρ̄2w23 = 0A;
βw12ρ2w23 + αw12ρ̄2w23 = 0A.

Now, if α2 − β2 6= 0F then w12ρ2w23 = w12ρ̄2w23 = 0A, and hence

w12w23 = w12e2w23 = w12(ρ2 + ρ̄2)w23 = 0A,

which is not allowed since, according to Definition 2.1, that element is non-
zero. Thus suppose that α2 = β2. If α = β one has again that w12w23 = 0A,
which is not allowed. Therefore it must be α = −β, and this implies that
w12ρ2w23 = w12ρ̄2w23. �
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Assume now that A13 is irreducible as an (A1, A3)-bimodule. Then

A13 = A1w12ρ2w23A3 = A1w12ρ̄2w23A3.

This means that there exist an integer k and, for every 1 ≤ i ≤ k, elements

ai ∈ A1 and bi ∈ A3 such that w12ρ̄2w23 =
∑k

i=1 aiw12ρ2w23bi. It follows
that

w12ρ̄2w23 = e1w12ρ̄2w23e3 =
k∑
i=1

e1aiw12ρ2w23bie3 =
k∑
i=1

e1aie1w12ρ2w23e3bie3

=

k∑
i=1

αie1w12ρ2w23βie3 = γw12ρ2w23,

since e1aie1 = αie1 and e3bie3 = βie3 for suitable αi, βi ∈ F and γ :=∑k
i=1 αiβi is in F \ {0F }. By the above remark, we conclude that

(5) w12ρ2w23 = w12ρ̄2w23

and it is a homogeneous element of degree |w12|+ |w23|.
Before proceeding, we construct two examples of minimal superalgebras

belonging to the class we are considering. To this end, we recall that a
Z2-grading on the complete matrix algebra Mn is called elementary if there
exists a n-tuple (g1, . . . , gn) ∈ Zn2 such that the matrix units Eij of Mn are

homogeneous and Eij ∈ M (τ)
n if, and only if, τ = gj − gi. In an equivalent

manner, we can define a map | | : {1, . . . , n} −→ Z2 inducing a grading on
Mn by setting the degree of Eij equal to |j| − |i|. Obviously the algebra of
upper block triangular matrices also admits elementary gradings. In fact, the
embedding of such an algebra into a full matrix algebra with an elementary
grading makes it a homogeneous subalgebra.

Now, let us consider the subalgebra of UT (k + l, 2m, r + s) consisting of
matrices of the form 

C J1 J2 J3

0 D E J4

0 E D J5

0 0 0 H

 ,

where C ∈ Mk+l, D,E ∈ Mm, H ∈ Mr+s, J1, J2 ∈ M(k+l)×m, J3 ∈
M(k+l)×(r+s), J4, J5 ∈ Mm×(r+s). We endow it with two gradings induced
by the (k + l + 2m+ r + s)-tuples

(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
s times

)

and

(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
s times

).

Let us denote these superalgebras by (Â, | |Â) and (B̂, | |B̂) (and their matrix

units by E
(Â)
ij and E

(B̂)
ij ) respectively. To make more transparent the graded
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structure of these algebras, it is easier to represent each element of Â as

k l m m r s

k
l
m
m
r
s



C0 C1 J̌0 J ′1 J ′′0 J ′′′1

C̃1 C̃0 J̌1 J ′0 J ′′1 J ′′′0

0 0 D0 E1 J̃0 J̃ ′1
0 0 E1 D0 J̃1 J̃ ′0
0 0 0 0 H0 H1

0 0 0 0 H̃1 H̃0


where the subscripted indices 0 and 1 denote the homogeneous degree of the
elements and the integers k, l,m, r, s the sizes of the blocks in the matrix.
Similarly, we can write the elements of (B̂, | |B̂) as

k l m m r s

k
l
m
m
r
s



C0 C1 J̌0 J ′1 Ĵ1 Ĵ ′0
C̃1 C̃0 J̌1 J ′0 Ĵ0 Ĵ ′1
0 0 D0 E1 J̃1 J̃ ′0
0 0 E1 D0 J̃0 J̃ ′1
0 0 0 0 H0 H1

0 0 0 0 H̃1 H̃0


It is easily seen that the maximal semisimple homogeneous subalgebra of

Â is equal to Â1 ⊕ Â2 ⊕ Â3 where

Â1 := 〈E(Â)
ij | 1 ≤ i, j ≤ k + l〉 ∼= Mk,l,

Â2 := 〈E(Â)
ij + E

(Â)
i+m,j+m, E

(Â)
pq + E

(Â)
p+m,q−m | k + l + 1 ≤ i, j, p ≤ k + l +m,

k + l +m+ 1 ≤ q ≤ k + l + 2m〉 ∼= Mm(F ⊕ tF ),

Â3 := 〈E(Â)
ij | k + l + 2m+ 1 ≤ i, j ≤ k + l + 2m+ r + s〉 ∼= Mr,s

and its Jacobson radical is generated as a two-sided ideal by the homoge-

neous elements of degree zero w
(Â)
12 := E

(Â)
1,k+l+1 and w

(Â)
23 := E

(Â)
k+l+1,k+l+2m+1.

Finally, since for w
(Â)
12 and w

(Â)
23 and the homogeneous (minimal) idempo-

tents e
(Â)
1 := E

(Â)
11 ∈ Â1, e

(Â)
2 := E

(Â)
k+l+1,k+l+1 + E

(Â)
k+l+m+1,k+l+m+1 ∈ Â2

and e
(Â)
3 := E

(Â)
k+l+2m+1,k+l+2m+1 ∈ Â3 the relations appearing in Definition

2.1 are satisfied, we have that Â is a minimal superalgebra. Moreover the
subspace Â13 is irreducible as an (Â1, Â3)-bimodule.

The same conclusion holds for the superalgebra B̂, which has semisimple
part B̂ss = B̂1⊕B̂2⊕B̂3 coinciding with that of Â (for the elements defining

B̂ it is sufficient to replace the supscpript (Â) with (B̂) and observe that, in

this case, w
(B̂)
23 is homogeneous of degree 1).
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Lemma 4.1. If k > l and r > s, for the minimal superalgebras (Â, | |Â)

and (B̂, | |B̂) one has that TZ2(Â) 6⊆ TZ2(B̂) and TZ2(Â) 6⊆ TZ2(B̂). Conse-

quently, Â and B̂ are not isomorphic as graded algebras.

Proof. As a first step, we prove that TZ2(Â) 6⊆ TZ2(B̂). To this end, let
us consider the element of F 〈Y ∪ Z〉
(6)
f := St2(m+k)−1(y1, . . . , y2(m+k)−1)z1 St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1))

and observe that any non-zero graded evaluation of the Standard polynomi-
als St2(m+k)−1(y1, . . . , y2(m+k)−1) and St2(m+r)−1(y2(m+k)+1, . . . , y2(2m+k+r)−1)

in Â is in J(Â) ⊕ Â3 and Â1 ⊕ J(Â), respectively. Therefore any non-

zero graded evaluation of f in Â is in J(Â)2. In particular, it has to be

a linear combination of the matrix units E
(Â)
ij with either 1 ≤ i ≤ k and

k + l + 2m + r + 1 ≤ j ≤ k + l + 2m + r + s or k + 1 ≤ i ≤ k + l and
k + l + 2m+ 1 ≤ j ≤ k + l + 2m+ r. Now, take the polynomial

(7) g := St2l+1(ŷ1, . . . , ŷ2l+1)f St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1)),

where ŷ1, . . . , ŷ2(s+l+1) are pairwise different variables of degree zero of F 〈Y ∪
Z〉 not involved in f . Let µ : F 〈Y ∪ Z〉 −→ Â be a non-zero graded

evaluation of g in Â. Since g is multilinear, for our aims we can assume
that such an evaluation is made at a homogeneous basis of Â including

the matrix units E
(Â)
ij of Â1 and Â3. According to the above discussion,

µ(St2l+1(ŷ1, . . . , ŷ2l+1)) must be in Â1 and µ(St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1)))

must be in Â3. Taking into account the homogeneous degree of these fac-
tors and the original assumption that k > l and r > s, the Amitsur-Levitzki
Theorem yields that µ(St2l+1(ŷ1, . . . , ŷ2l+1)) is a linear combination of the

matrices E
(Â)
αβ and µ(St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1))) of the matrices E

(Â)
pq , where

1 ≤ α, β ≤ k and k+ l+ 2m+ 1 ≤ p, q ≤ k+ l+ 2m+ r. This fact combined
with the previous observations on the graded evaluations of the polynomial
f allows us to conclude that g is an element of TZ2(Â).

Finally, as (B̂1⊕B̂12⊕B̂2)(0) contains a subalgebra isomorphic to UT (k,m),
for every i and j such that 1 ≤ i ≤ k and k+ l+ 1 ≤ j ≤ k+ l+m there ex-

ists a graded evaluation of St2(m+k)−1(y1, . . . , y2(m+k)−1) in B̂ equal to E
(B̂)
ij .

Analogously, for every p and q such that k + l + m + 1 ≤ p ≤ k + l + 2m
and k + l + 2m + 1 ≤ q ≤ k + l + 2m + r there is an evaluation of

St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1)) equal to E
(B̂)
pq . Thus, fixing integers

j and p as above and i := l + 1 and q := k + l + 2m+ r − s, evaluating the

variable z1 at E
(B̂)
jp + E

(B̂)
j+m,p−m we have found a graded evaluation of the

polynomial f in B̂ equal to E
(B̂)
l+1,k+l+2m+r−s. Since we can find an evaluation

of St2l+1(ŷ1, . . . , ŷ2l+1) equal to E
(B̂)
1,l+1 and one of St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1))

equal to E
(B̂)
k+l+2m+r−s,k+l+2m+r, we have exhibited a graded evaluation of
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the polynomial g in B̂ equal to E
(B̂)
1,k+l+2m+r, and the desired conclusion

holds.
On the other hand, the same arguments used above allow us to conclude

that the polynomial

Γ := St2l+1(ŷ1, . . . , ŷ2l+1)δ St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1)),

where

δ := St2(m+k)−1(y1, . . . , y2(m+k)−1)y2(m+k) St2(m+r)−1(y2(m+k)+1, . . . , y2(2m+k+r)−1)

and ŷ1, . . . , ŷ2(s+l+1) are pairwise different elements of degree zero of F 〈Y ∪
Z〉 not involved in δ, is in TZ2(B̂)\TZ2(Â), and this completes the proof. �

We prove now that the graded algebras Â and B̂ are, up to isomorphism,
the unique elements of the class of minimal superalgebras that we have
considered until now. Furthermore we provide the classification of all the
minimal superalgebras whose maximal semisimple homogeneous subalgebra
coincides with (A1 ⊕A2 ⊕A3), as claimed in Theorem 2.5.

Proof of Theorem 2.5. (a) Continuing to use the notation introduced
at the beginning of the section, let us consider the elements

u12 := w12ρ2 − w12ρ̄2 and u23 := ρ2w23 − ρ̄2w23

of the minimal superalgebra A. When |w12| = |w23| = 1, both of them
are of degree 0 and, from the fact that u12u23 = w12w23 6= 0A, it is easily
seen that the subalgebra of A generated by A1, A2 and A3 and u12 and
u23 is a minimal superalgebra coinciding with A. In the same manner, if
|w12| = 1 and |w23| = 0, u12 has degree 0, whereas u23 has degree 1. In this
case if we replace the elements w12 and w23 with u12 and u23 respectively,
we also obtain the superalgebra A. Therefore we conclude that it is always
possible to assume that |w12| = 0, and hence we are left with two possibilities
(depending upon |w23|).

At this point, take a minimal superalgebra B with maximal semisim-
ple homogeneous subalgebra Bss = B1 ⊕ B2 ⊕ B3 coinciding with Ass and
homogeneous radical elements z12 (which, as with w12, we can assume of
degree zero) and z23 such that |z23| = |w23| and B13 is irreducible as a
(B1, B3)-bimodule. We aim to show that A and B are isomorphic as graded
algebras. Now, for every 1 ≤ j ≤ 3, call fj the minimal idempotents (of
degree zero) of Bj and write f2 as f2 = ν2 + ν̄2, where ν2 is the the non-
homogeneous minimal idempotent of the minimal two-sided ideal J2 of B2

such that B2 = J2⊕J̄2 (we are regarding B as an algebra with action of an
automorphism φB of order 2 and setting J̄2 := φB(J2) and ν̄2 := φB(ν2)).
Let us consider the superalgebra isomorphisms

Ψjj : Aj −→ Bj

such that Ψjj(ej) = fj if j 6= 2 and Ψ22(ρ2) = ν2 (and hence Ψ22(ρ̄2) = ν̄2).
Applying the same arguments as in Section 3, for every 1 ≤ i < j ≤ 3
one constructs a vector space isomorphism Ψij from the subspace Aij of A
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into the subspace Bij of B, which clearly preserves the Z2-grading when
(i, j) 6= (1, 3). If (i, j) = (1, 3) for the map

Ψ13 : A1w12ρ2w23A3 −→ B1z12ν2z23B3, a1w12ρ2w23a3 7−→ Ψ11(a1)z12ν2z23Ψ33(a3)

invoking (5) one has that

Ψ13(φ(w12ρ2w23)) = Ψ13((−1)|w23|w12ρ̄2w23) = Ψ13((−1)|w23|w12ρ2w23)

= (−1)|z23|z12ν2z23 = (−1)|z23|z12ν̄2z23

= φB(z12ν2z23) = φB(Ψ13(w12ρ2w23)),

from which it follows that the Z2-grading is still preserved.
Since A = ⊕1≤i≤j≤3Aij and B = ⊕1≤i≤j≤3Bij , these maps induce a

vector space isomorphism from A into B, which is easily verified (the details
are left to the reader) to actually be a superalgebra isomorphism.

Therefore we are left with at most two isomorphism-types for the super-
algebras we are considering. From the fact that the previously constructed
minimal non-isomorphic superalgebras, Â and B̂, satisfy all the assumptions
of the theorem, the desired conclusion follows.

(b) Assume that A13 is still irreducible but k = l (the case when r = s
can be analogously treated, and for this reason we omit it). As the first
part of the proof of (a) does not depend on the assumption on the pairs of
integers (k, l) and (r, s), we conclude that A must be isomorphic either to

Â or to B̂. Now, set n := 2k + 2m + r + s and equip the complete matrix
algebra Mn with the gradings induced by the same n-tuples defining the
gradings | |Â on Â and | |B̂ on B̂. Let us denote these superalgebras by
(Mn, | |Â) and (Mn, | |B̂), respectively. Consider the bijection σ on the set
{1, . . . , n} defined by

σ(i) :=


i+ k if 1 ≤ i ≤ k;
i− k if k + 1 ≤ i ≤ 2k;
i+m if 2k + 1 ≤ i ≤ 2k +m;
i−m if 2k +m+ 1 ≤ i ≤ 2k + 2m;
i if 2k + 2m+ 1 ≤ i ≤ n.

and the endomorphism ψ : Mn −→ Mn defined on the matrix units of Mn

as
ψ(Eij) := Eσ(i),σ(j).

It is easily seen that ψ is a superalgebra isomorphism from (Mn, | |Â) into
Mn endowed with the grading induced by the n-tuple

(1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
s times

),

which is actually (Mn, | |B̂). In particular, the image ψ(Â) of the homoge-

neous subalgebra Â of (Mn, | |Â) coincides with (B̂, | |B̂), and we are done.

(c) Using the arguments presented in the proof of part (a), replacing
the element w12 with u12 := w12ρ2 − w12ρ̄2 if |w12| = 1 and w23 with
u23 := ρ2w23 − ρ̄2w23 again if |w23| = 1, we can always assume that the
radical elements of A appearing in Definition 2.1 have degree zero (we notice
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that, since A13 is not irreducible, we also have u12w23 6= 0A and w12u23 6=
0A). At this stage, the same line of reasoning applied in the proof of (a)
allows us to conclude that there exists one isomorphism-type for the minimal
superalgebra A (the easy details are left to the reader). �

As we did above with the superalgebras Â and B̂, we want to construct a
concrete example of superalgebra isomorphic to every minimal superalgebra
A with maximal semisimple part equal to A1 ⊕ A2 ⊕ A3 such that A13 is
not irreducible. To this end, let us consider the subalgebra of UT (2(k +
l), 2m, 2(r + s)) consisting of matrices of the form

K 0 I1 I2 I3 I4

0 K I2 I1 I4 I3

0 0 L P I5 I6

0 0 P L I6 I5

0 0 0 0 Q 0
0 0 0 0 0 Q

 ,

where K ∈ Mk+l, L,P ∈ Mm, Q ∈ Mr+s, I1, I2 ∈ M(k+l)×m, I3, I4 ∈
M(k+l)×(r+s), I5, I6 ∈ Mm×(r+s). We endow it with the grading induced by
the 2(k + l +m+ r + s)-tuple

(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
l times

0, . . . , 0︸ ︷︷ ︸
m times

, 1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
r times

, 1, . . . , 1︸ ︷︷ ︸
s times

, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
s times

).

Let us denote this Z2-graded algebra by Ǎ. It is more convenient to represent
each element of Ǎ as

k l k l m m r s r s

k
l
k
l
m
m
r
s
r
s



K0 K1 0 0 Ǐ0 Ǐ1 I ′0 I ′1 I ′′1 I ′′0
K̃1 K̃0 0 0 Ǐ ′1 Ǐ ′0 I ′′′1 I ′′′0 Ĩ0 Ĩ1

0 0 K0 K1 Ǐ1 Ǐ0 I ′′1 I ′′0 I ′0 I ′1
0 0 K̃1 K̃0 Ǐ ′0 Ǐ ′1 Ĩ0 Ĩ1 I ′′′1 I ′′′0

0 0 0 0 L0 P1 Î0 Î1 Î ′1 Î ′0
0 0 0 0 P1 L0 Î ′1 Î ′0 Î0 Î1

0 0 0 0 0 0 Q0 Q1 0 0

0 0 0 0 0 0 Q̃1 Q̃0 0 0
0 0 0 0 0 0 0 0 Q0 Q1

0 0 0 0 0 0 0 0 Q̃1 Q̃0


where the subscripted indices 0 and 1 denote the homogeneous degrees of
the elements.

If E
(Ǎ)
ij are the matrix units of Ǎ, it is easily seen that the maximal

semisimple homogeneous subalgebra of Ǎ is equal to Ǎ1 ⊕ Ǎ2 ⊕ Ǎ3 where

Ǎ1 := 〈E(Ǎ)
ij + E

(Ǎ)
i+k+l,j+k+l | 1 ≤ i, j ≤ k + l〉 ∼= Mk,l,

Ǎ2 := 〈E(Ǎ)
ij + E

(Ǎ)
i+m,j+m, E

(Ǎ)
pq + E

(Ǎ)
p+m,q−m | 2(k + l) + 1 ≤ i, j, p ≤ 2(k + l) +m,

2(k + l) +m+ 1 ≤ q ≤ 2(k + l +m)〉 ∼= Mm(F ⊕ tF ),
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Ǎ3 := 〈E(Ǎ)
ij +E

(Ǎ)
i+r+s,j+r+s | 2(k+l+m)+1 ≤ i, j ≤ 2(k+l+m)+r+s〉 ∼= Mr,s

and its Jacobson radical is generated as a two-sided ideal by the homoge-

neous elements of degree zero w
(Ǎ)
12 := E

(Ǎ)
1,2(k+l)+1 + E

(Ǎ)
k+l+1,2(k+l)+m+1 and

w
(Ǎ)
23 := E

(Ǎ)
2(k+l)+1,2(k+l+m)+1 + E

(Ǎ)
2(k+l)+m+1,2(k+l+m)+r+s+1. Finally, since

for w
(Ǎ)
12 and w

(Ǎ)
23 and the homogeneous (minimal) idempotents e

(Ǎ)
1 :=

E
(Ǎ)
11 +E

(Ǎ)
k+l+1,k+l+1 ∈ Ǎ1, e

(Ǎ)
2 := E

(Ǎ)
2(k+l)+1,2(k+l)+1+E

(Ǎ)
2(k+l)+m+1,2(k+l)+m+1 ∈

Ǎ2 and e
(Ǎ)
3 := E

(Ǎ)
2(k+l+m)+1,2(k+l+m)+1 +E

(Ǎ)
2(k+l+m)+r+s+1,2(k+l+m)+r+s+1 ∈

Ǎ3 the relations appearing in Definition 2.1 are satisfied, we have that Ǎ is
a minimal superalgebra. Furthermore Ǎ13 is not irreducible as an (Ǎ1, Ǎ3)-
bimodule, and we are done.

We are now in a position to state the main result of this paper which was
claimed in Theorem 2.6.

Proof of Theorem 2.6. (a) After applying the same arguments as in the
proof of Theorem 2.4, it remains only to consider a minimal superalgebra
B = Bss+J(B) such thatBss = B1⊕B2⊕B3 withBi = Ai and homogeneous
minimal idempotents fi ∈ Bi for every 1 ≤ i ≤ 3, its Jacobson radical
is generated by homogeneous elements z12 and z23 with z12z23 6= 0B and
TZ2(A) ⊆ TZ2(B). It is sufficient to show that TZ2(A) = TZ2(B).

To this end, we observe that we can assume that B13 is irreducible as
well. In fact, suppose that this is not the case. Hence, writing as usual f2

as ν2 + ν̄2, one has that

B13 = B1z12ν2z23B3 ⊕B1z12ν̄2z23B3,

as both the summands are irreducible (B1, B3)-bimodules. Let I be the ideal
of B generated by z12ν2z23−z12ν̄2z23, which is obviously homogeneous. Since
I = B1(z12ν2z23−z12ν̄2z23)B3 is irreducible as a (B1, B3)-bimodule, I 6= B13.
Now, for the superalgebra B′ := B/I it is easily seen that its maximal
semisimple homogeneous subalgebra coincides with Bss and, since I ⊆ B13,
its Jacobson radical is equal to J(B)/I. Furthermore (z12+I)·(z23+I) 6= 0B′ ,
since z12z23 is not in I. Therefore B′ is a minimal superalgebra such that
B′13 is irreducible and

TZ2(B) ⊆ TZ2(B′).

As TZ2(A) ⊆ TZ2(B), for our aims it is sufficient to replace the superalgebra
B with B′.

If k > l and r > s Lemma 4.1 and Theorem 2.5 (a) yield that A and B

are isomorphic either to Â or to B̂. In particular, from Lemma 4.1 it follows
that the containment TZ2(A) ⊆ TZ2(B) implies that A is isomorphic to B
as a graded algebra and, consequently, TZ2(A) = TZ2(B).

Finally, assume that either k = l or r = s. According to Theorem 2.5
(b), A must be isomorphic to B as a superalgebra, and hence they satisfy
the same polynomial identities.
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(b) Assume that the (A1, A3)-bimodule A13 is not irreducible and, first,
that either k = l or r = s. We aim to show that supvar(A) is minimal. For
this purpose, as in the proof of part (a) and Theorem 2.4, take a minimal
superalgebra B = Bss + J(B) such that TZ2(A) ⊆ TZ2(B) and Bss = A1 ⊕
A2⊕A3. We have to prove that A and B satisfy the same graded polynomial
identities.

If B13 is not irreducible as an (A1, A3)-bimodule, Theorem 2.5 (c) forces
A to be isomorphic to B as a graded algebra, and we are done.

Therefore assume that B13 is irreducible and k = l (analogous arguments
can be used when r = s). By invoking again Theorem 2.5 (b) and its proof

one has that B is isomorphic to Â. This superalgebra can be written as(
V U
0 W

)
,

where V = Mk,l, U = M(k+l)×(2m+r+s) and W ⊆M2m+r+s is the subalgebra

of Â generated by Â2, Â3 and w
(Â)
23 . Since k = l, from Proposition 5.3 of

[2] we deduce that V is Z2-regular and Theorem 4.5 of [2] yields that the
ideal of graded polynomial identities satisfied by this algebra is equal to
TZ2(V ) · TZ2(W ) = TZ2(A1) · TZ2(W ). But, according to the discussion of
Section 2 of [3], in any event W is a minimal superalgebra with maximal
semisimple homogeneous subalgebra coinciding with A2⊕A3. At this stage,
from Theorem 5.3 of [4] one has that TZ2(W ) = TZ2(A2)·TZ2(A3), and hence

TZ2(B) = TZ2(A1) · TZ2(A2) · TZ2(A3).

As the second term of the above equality is contained in TZ2(A), the desired
conclusion holds.

Conversely, assume that k > l and r > s. The final target is to construct
a minimal superalgebra A′ such that TZ2(A) & TZ2(A′) and expZ2

(A) =
expZ2

(A′). To this end, let I be the ideal of A generated by the element
w12ρ2w23 − w12ρ̄2w23, which is clearly homogeneous, and set A′ := A/I.
Obviously,

TZ2(A) ⊆ TZ2(A′).

As seen in the proof of part (a) (in that case for the algebra B), A′ is
a minimal superalgebra with maximal semisimple homogeneous subalgebra
equal to A1 ⊕A2 ⊕A3. Furthermore, if φ′ is the action induced by φ on A′,
one has that

φ′(w12ρ2w23 + I) = w12ρ̄2w23 + I = w12ρ2w23 + I

(we have supposed that |w12| = |w23| = 0). This means that A′13 is irre-

ducible. Therefore, A′ is isomorphic to the superalgebra Â.
At this stage, take the polynomials f and g defined in (6) and (7), re-

spectively. We have shown there that g ∈ TZ2(Â) = TZ2(A′). We claim
that it is not a graded polynomial identity for the superalgebra Ǎ described
after the proof of Theorem 2.5, and hence for A as they are isomorphic.
In fact, for every i and j such that 1 ≤ i ≤ k and 2(k + l) + 1 ≤ j ≤
2(k+l)+m there exists a graded evaluation of St2(m+k)−1(y1, . . . , y2(m+k)−1)
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in Ǎ equal to E
(Ǎ)
ij + E

(Ǎ)
i+k+l,j+m. Analogously, for every p and q such that

2(k + l) + 1 ≤ p ≤ 2(k + l) + m and 2(k + l + m) + 1 ≤ q ≤ 2(k +
l + m) + r there is an evaluation of St2(m+r)−1(y2(m+k), . . . , y2(2m+k+r−1))

equal to E
(Ǎ)
pq + E

(Ǎ)
p+m,q+r+s. Thus, fixing integers j and p as above and

i := l + 1 and q := 2(k + l + m) + r − s, evaluating the variable z1

at E
(Ǎ)
j+m,p + E

(Ǎ)
j,p+m, we have found a graded evaluation of the polyno-

mial f in Ǎ equal to E
(Ǎ)
l+1,2(k+l+m+r) + E

(Ǎ)
k+2l+1,2(k+l+m)+r−s. Since we can

find an evaluation of St2l+1(ŷ1, . . . , ŷ2l+1) equal to E
(Ǎ)
1,l+1 + E

(Ǎ)
k+l+1,k+2l+1

and one of St2s+1(ŷ2l+2, . . . , ŷ2(s+l+1)) equal to E
(Ǎ)
2(k+l+m)+r−s,2(k+l+m)+r +

E
(Ǎ)
2(k+l+m+r),2(k+l+m+r)+s, the claim is confirmed. Therefore g is in TZ2(A′)\

TZ2(A), and this completes the proof. �
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