We investigate the size of the regular set for suitable weak solutions of the Navier--Stokes equation, in the sense of Caffarelli--Kohn--Nirenberg cite{CKN}. We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space ${t>0}$ in an appropriate limit. In particular, we obtain that if the $L^{2}$ norm with weight $|x|^{-rac12}$ of the data tends to 0, the regular set invades ${t>0}$; this result improves Theorem D of cite{CKN}.

On the regularity set and angular integrability for the Navier–Stokes equation / D'Ancona, Piero Antonio; Luca', Renato. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 221:3(2016), pp. 1255-1284. [10.1007/s00205-016-0982-2]

On the regularity set and angular integrability for the Navier–Stokes equation

D'ANCONA, Piero Antonio;LUCA', RENATO
2016

Abstract

We investigate the size of the regular set for suitable weak solutions of the Navier--Stokes equation, in the sense of Caffarelli--Kohn--Nirenberg cite{CKN}. We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space ${t>0}$ in an appropriate limit. In particular, we obtain that if the $L^{2}$ norm with weight $|x|^{-rac12}$ of the data tends to 0, the regular set invades ${t>0}$; this result improves Theorem D of cite{CKN}.
2016
analysis; mathematics (miscellaneous); mechanical engineering
01 Pubblicazione su rivista::01a Articolo in rivista
On the regularity set and angular integrability for the Navier–Stokes equation / D'Ancona, Piero Antonio; Luca', Renato. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 221:3(2016), pp. 1255-1284. [10.1007/s00205-016-0982-2]
File allegati a questo prodotto
File Dimensione Formato  
Dancona_On-the-regularity_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 226.51 kB
Formato Adobe PDF
226.51 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact