We investigate the size of the regular set for suitable weak solutions of the Navier--Stokes equation, in the sense of Caffarelli--Kohn--Nirenberg cite{CKN}. We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space ${t>0}$ in an appropriate limit. In particular, we obtain that if the $L^{2}$ norm with weight $|x|^{-rac12}$ of the data tends to 0, the regular set invades ${t>0}$; this result improves Theorem D of cite{CKN}.
On the regularity set and angular integrability for the Navier–Stokes equation / D'Ancona, Piero Antonio; Luca', Renato. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 221:3(2016), pp. 1255-1284. [10.1007/s00205-016-0982-2]
On the regularity set and angular integrability for the Navier–Stokes equation
D'ANCONA, Piero Antonio;LUCA', RENATO
2016
Abstract
We investigate the size of the regular set for suitable weak solutions of the Navier--Stokes equation, in the sense of Caffarelli--Kohn--Nirenberg cite{CKN}. We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space ${t>0}$ in an appropriate limit. In particular, we obtain that if the $L^{2}$ norm with weight $|x|^{-rac12}$ of the data tends to 0, the regular set invades ${t>0}$; this result improves Theorem D of cite{CKN}.File | Dimensione | Formato | |
---|---|---|---|
Dancona_On-the-regularity_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
226.51 kB
Formato
Adobe PDF
|
226.51 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.