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Abstract We investigate the size of the regular set for suitable weak solutions of the
Navier–Stokes equation, in the sense of Caffarelli–Kohn–Nirenberg [2]. We consider
initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and
we prove that the regular set increases if the data have higher angular integrability,
invading the whole half space {t > 0} in an appropriate limit. In particular, we obtain
that if the L2 norm with weight |x|− 1

2 of the data tends to 0, the regular set invades
{t > 0}; this result improves Theorem D of [2].
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1 Introduction and main results

We consider the Cauchy problem for the Navier–Stokes equation on [0,∞)×R3 ∂tu+(u ·∇)u−∆u = −∇P
∇ ·u = 0

u(0,x) = u0(x).
(1.1)

describing a viscous incompressible fluid in the absence of external forces, where
as usual u is the velocity field of the fluid and P the pressure, and the initial data

The authors are partially supported by the Italian Project FIRB 2012 “Dispersive dynamics: Fourier Anal-
ysis and Variational Methods”. The second author is supported by the ERC grant 277778 and MINECO
grant SEV-2011-0087 (Spain).

Piero D’Ancona
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satisfy the compatibility condition ∇ ·u0 = 0. We use the same notation for the norm
of scalar, vector or tensor quantities:

‖P‖L2 := (
∫

P2dx)
1
2 , ‖u‖2

L2 := ∑ j ‖u j‖2
L2 , ‖∇u‖2

L2 := ∑ j,k ‖∂ku j‖2
L2 (1.2)

and we write simply L2(R3) instead of [L2(R3)]3, or S ′(R3) instead of [S ′(R3)]3

and so on. Regularity of the global weak solutions constructed in [17], [21] is a noto-
rious open problem, although many partial results exist.

The case of small data is well understood. In the proofs of well posedeness for
small data, the equation is regarded as a linear heat equation perturbed by a small
nonlinear term (u ·∇)u, and the natural approach is a fixed point argument around the
heat propagator. More precisely, one rewrites the problem in integral form

u = et∆ u0−
∫ t

0 e(t−s)∆P∇ · (u⊗u)(s) ds in [0,∞)×R3 (1.3)

where P is the Leray projection

P f := f −∇∆
−1(∇ · f ), (1.4)

namely the projection onto the subspace of the L2 divergence free vector fields, and
then the Picard iteration scheme is defined by

u1 := et∆ u0, un := et∆ u0−
∫ t

0 e(t−s)∆P∇ · (un−1⊗un−1)(s) ds. (1.5)

Once the velocity is known the pressure can be recovered at each time via the rep-
resentation formula P = −∆−1∇⊗∇(u⊗ u). Small data results fit in the following
abstract framework.

Proposition 1.1 ([20]) Let X ⊂
⋂

s<∞ L2
t L2

uloc,x((0,s)×R3)1 be a Banach space such
that the bilinear form

B(u,v) :=
∫ t

0 e(t−s)∆P∇ · (u⊗ v)(s) ds (1.6)

is bounded from X×X to X:

‖B(u,v)‖X ≤CX‖u‖X‖v‖X .

Moreover, let X0 ⊂S ′(R3) be a normed space such that et∆ : X0→ X is bounded:

‖et∆ f‖X ≤ AX0,X‖ f‖X0 .

Then for every data u0 such that ‖u0‖X0 < 1/4CX AX0,X the sequence un is Cauchy in
X and converges to a solution u of the integral equation (1.3). The solution satisfies

‖u‖X ≤ 2AX0,X‖u0‖X0 .

1 The space L2
uloc consists of the functions that are uniformly locally square-integrable (see [20] Defini-

tion 11.3). The operator (1.6) is well-defined on
⋂

s<∞ L2
t L2

uloc,x((0,s)×R3)×
⋂

s<∞ L2
t L2

uloc,x((0,s)×R3).
We refer to [20], Chapter 11, for more details.
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The space X is usually called an admissible (path) space, while X0 is called an
adapted space. Many adapted spaces X0 have been studied: L3 [18], Morrey spaces
[16], [33], Besov spaces [4], [14], [24] and several others. The largest space in which
Picard iteration has been proved to converge is BMO−1 [19].

A crucial ingredient in the theory is symmetry invariance. The natural symmetry
of the Navier–Stokes equation is the translation-scaling

u0(x) 7→ λu0(λ (x− x0)), λ ∈ R+ := (0,∞), x0 ∈ R3,

and indeed all the spaces X0 mentioned above are invariant for this transformations.
On the other hand, in results of local regularity a role may be played by some spaces
which are scaling but not translation invariant, like the weighted Lp spaces with norm

‖|x|1−
3
p u(x)‖Lp(R3).

When p = 2 this is the weighted L2 space with norm ‖|x|− 1
2 u(x)‖L2 , used in the

classical regularity results of [2]. We recall a key definition from that paper.

Definition 1.2 A point (t0,x0) ∈R+×R3 is regular for a solution u(t,x) of (1.1) if u
is essentially bounded on a neighborhood of (t0,x0). It follows that u is smooth in the
space variables near (t0,x0) (see for instance [28]). A subset of R+×R3 is regular if
all its points are regular.

The following result (Theorem D in [2]) applies to the special class of suitable
weak solutions, see the beginning of Section 2 for the precise definition. The weak
solutions constructed in [21] are actually suitable. We use the notation

Πα :=
{
(t,x) ∈ R+×R3 : t >

|x|2

α

}
(1.7)

to denote the region above the paraboloid of aperture α (in the upper half space t > 0).
Note that Πα is increasing in α .

Theorem 1.3 (Caffarelli–Kohn–Nirenberg) There exists a constant ε0 > 0 such
that the following holds. Let u be a suitable weak solution of Problem 1.1 with di-
vergence free initial data u0 ∈ L2(R3). If

‖|x|−1/2u0‖2
L2(R3) = ε < ε0 (1.8)

then the set

Πε0−ε ≡
{
(t,x) : t >

|x|2

ε0− ε

}
(1.9)

is regular for u.

The theorem states that if the weighted L2 norm of the data is sufficiently small,
then the solution is smooth above a certain paraboloid with vertex at the origin. If the
size of the data tends to 0, the regular set increases and invades a limit set Πε0 , which
is strictly contained in the half space t > 0.
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It is reasonable to expect that the regular set actually invades the whole upper half
space t > 0 when the size of the data tends to 0. This is indeed a special case of our
main result, see Theorem 1.5 below and in particular Corollary 1.6.

However our main goal is a more general investigation of the influence on the reg-
ular set of additional angular integrability of the data. We measure angular regularity
using the following mixed norms:

‖ f‖
Lp
|x|L

p̃
θ

:=
(∫ +∞

0
‖ f (ρ · )‖p

L p̃(S2)
ρ

2dρ

) 1
p
, ‖ f‖

L∞

|x|L
p̃
θ

:= sup
ρ>0
‖ f (ρ · )‖L p̃(S2).

(1.10)
The idea of separating radial and angular regularity is not new; it proved useful es-
pecially in the context of Strichartz estimates and dispersive equations (see [5], [8],
[13], [23], [26] [34]). The Lp

|x|L
p̃
θ

scale includes the usual Lp norms when p̃ = p:

‖u‖Lp
|x|L

p
θ

= ‖u‖Lp(R3). (1.11)

Note also that for radial functions the value of p̃ is irrelevant, in the sense that2

u radial ⇒ ‖u‖
Lp
|x|L

p̃
θ

' ‖u‖Lp(R3) ∀p, p̃ ∈ [1,∞] (1.12)

while for generic functions we have only

‖u‖
Lp
|x|L

p̃
θ

. ‖u‖
Lp
|x|L

p̃1
θ

if p̃≤ p̃1. (1.13)

With respect to scaling, the mixed radial-angular norm Lp
|x|L

p̃
θ

behaves like Lp and in
particular we have for all p̃ ∈ [1,∞] and all λ > 0

‖|x|α λu0(λx)‖
Lp
|x|L

p̃
θ

= ‖|x|α u0(x)‖Lp
|x|L

p̃
θ

, provided α = 1− 3
p
. (1.14)

As a first application, we show that for initial data with small ‖|x|α u0‖Lp
|x|L

p̃
θ

norm and

p̃≥ 2p/(p−1), the problem has a global smooth solution. As we prove in Section 2,
this norm controls the B−1+3/q

q,∞ norm (for q large enough), and this space is embedded
in BMO−1, thus the existence part in Theorem 1.4 could be immediately deduced
from the more general results in [4], [19], [24]. However, we are especially interested
in the quantitative estimate (1.18), which will be a crucial tool for the proof of our
main Theorem 1.5, so we prefer to give a more direct proof of Theorem 1.4 in Section
3.

Theorem 1.4 Let 1 < p < 5, p̃ ≥ 2p/(p−1), α = 1−3/p and let u0 ∈ Lp
|x|α pd|x|L

p̃
θ

be divergence free. Moreover, let
2p

p−1 ≤ q < ∞ if 1 < p≤ 2
2p

p−1 ≤ q < 3p
p−2 if 2≤ p < 3

p < q < 3p
p−2 if 3≤ p < 5

(1.15)

2 As usual we write A . B if there is a constant C independent of A,B such that A ≤CB and A ' B if
A . B and B . A.
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and
2
r
+

3
q
= 1. (1.16)

There exists an ε̄ = ε̄(p, p̃,q)> 0 such that, if

‖|x|α u0‖Lp
|x|L

p̃
θ

< ε̄, (1.17)

Then Problem 1.3 has a unique global smooth solution u satisfying3

‖u‖Lr
t Lq

x
≤ C̄‖|x|α u0‖Lp

|x|L
p̃
θ

(1.18)

for some constant C̄ = C̄(p, p̃,q) independent of u0.

In the following we shall need only the special case corresponding to the choice

p = 2, p̃ = 4, q = 4. (1.19)

Thus, using the notations

ε1 := ε̄(2,4,4), C1 := C̄(2,4,4), (1.20)

we see in particular that for all divergence free initial data with

‖|x|−1/2u0‖L2
|x|L

4
θ

< ε1 (1.21)

there exists a unique global smooth solution u, which satisfies the estimate

‖u‖L8
t L4

x
≤C1‖|x|−1/2u0‖L2

|x|L
4
θ

. (1.22)

To prepare for our last result, we introduce the notations

θ1(p̃) := ( 2p̃−4
4−p̃ )1−p̃/4, θ2(p̃) := ( 2 p̃−4

4−p̃ )1−p̃/2, p̃ ∈ (2,4). (1.23)

It is easy to check that

lim
p̃→2+

θ1 = 0, lim
p̃→4−

θ1 = 1, (1.24)

lim
p̃→2+

θ2 = 1, lim
p̃→4−

θ2 = 0. (1.25)

Thus we may set θ1(2) = 0, θ2(2) = 1. We also define the norm

[u0]p̃ := ‖|x|−
2
p̃ u0‖

p̃
2−1

L p̃/2
|x| L p̃

θ

‖|x|−
1
p̃ u0‖

2− p̃
2

L p̃
x

. (1.26)

Note the following facts:

3 Here and in the following we use the notation ‖ f‖XY Z := ‖‖‖ f‖Z‖Y ‖X for nested norms. When we
write ‖u‖Lr

t Lq
x

we mean that the integration is extended to all x ∈ R3 and t > 0.
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1. It is easy to construct initial data such that [u0]p̃ is arbitrarily small while ‖u0‖BMO−1

is arbitrarily large. Indeed, fix φ ∈C∞
c (R3) and denote with φK(x) := φ(x−Kξ )

its translate in the direction ξ for some |ξ |= 1 and K > 1; we have obviously

‖|x|−
1
p̃ φK‖L p̃

x
' K−

1
p̃ (1.27)

since the L p̃
x norm is translation invariant. On the other hand, if the support of φ

is contained in a sphere B(0,R), we have

‖|x|−
2
p̃ φK‖p̃/2

L p̃/2
|x| L p̃

θ

=
∫ +∞

0 (
∫
S2 |φ(θρ−Kξ )|p̃dSθ )

1
2 ρdρ .

∫ K+R
K−R K−1ρdρ ' 1

(1.28)
and we obtain

[φK ]p̃ . (1)
p̃
2−1(K−

1
p̃ )2− p̃

2 = K
1
2−

2
p̃ . (1.29)

Thus, by the translation invariance of BMO−1, we conclude that if p̃ ∈ [2,4)

[φK ]p̃→ 0 while ‖φK‖BMO−1 = const as K→ ∞. (1.30)

2. In the limit cases p̃ = 2 and p̃ = 4 we have simply

[u0]2 = ‖|x|−1/2u0‖L2
x
, [u0]4 = ‖|x|−1/2u0‖L2

|x|L
4
θ

(1.31)

and actually the [ · ]p̃ norm arises as an interpolation norm between the two cases
(see (4.2), (4.3) and (4.7) below).

We can now state our main result, which interpolates between Theorems 1.3 and
1.4:

Theorem 1.5 There exists a constant δ > 0 such that the following holds. Let u be a
suitable weak solution of Problem 1.1 with divergence free initial data u0 ∈ L2(R3),
and let p̃ ∈ [2,4) and M > 1.

If the norm [u0]p̃ of the initial data satisfies

θ1 · [u0]p̃ ≤ δ , θ2 · [u0]p̃ ≤ δe−4M2
(1.32)

then the set

ΠMδ :=
{
(t,x) : t >

|x|2

Mδ

}
(1.33)

is regular for u.

The result can be interpreted as follows. Since θ2(p̃)→ 0 as p̃→ 4, we can choose
p̃ = p̃M as a function of M in such a way that

e4M2 ·θ2(p̃M)→ 0 as M→+∞. (1.34)

Then, since θ1(p̃)→ 1 as p̃→ 4, from the theorem it follows that, for all sufficiently
large M,

[u0]p̃M < δ ⇒ ΠMδ is a regular set for u. (1.35)
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In other words, if we take M → +∞ and the norm [u0]p̃M is less than δ , then the
regular set invades the whole half space t > 0. Note that, as remarked above, the
[u0]p̃M norm can be small even if the BMO−1 norm of u0 is large.

Even in the special case p̃ = 2, which is covered by Theorem D of [2], the result
gives some new information on the regular set. Indeed, for p̃ = 2 we have θ1 = 0,
θ2 = 1, and we obtain:

Corollary 1.6 There exists a constant δ > 0 such that for any suitable weak solution
u of Problem 1.1 with divergence free initial data u0 ∈ L2(R3), and for every M > 1,
if the initial data satisfy

‖|x|−1/2u0‖L2(R3) ≤ δe−4M2
(1.36)

then the set ΠMδ is regular for u.

Thus, taking M → +∞, we see that if the weighted L2 norm of the data is suf-
ficiently small, then the regular set invades the whole half space t > 0, as claimed
above.

The rest of the paper is organized as follows. In Section 2 we collect the necessary
tools, in particular we recall the fundamental Caffarelli–Kohn–Nirenberg regularity
criterion from [2]; in Section 3 we prove Theorem 1.4; Section 4 is devoted to the
proof of Theorem 1.5.

2 Preliminaries

We recall some definitions from [2].

Definition 2.1 Let u0 ∈ L2(R3). The couple (u,P) is a suitable weak solution of
Problem 1.1 if4

1. (u,P) satisfies (1.1) in the sense of distributions;
2. u(t)→ u0 weakly in L2 as t→ 0;
3. for some constants E0,E1 ∫

R3
|u|2(t) dx≤ E0,

for all t > 0 and ∫ ∫
R+×R3

|∇u|2 dtdx≤ E1;

4. for all non negative φ ∈C∞
c ([0,∞)×R3) and for all t > 0∫

R3
|u|2φ(t) + 2

∫ t

0

∫
R3
|∇u|2φ (2.1)

≤
∫
R3
|u0|2φ(0)+

∫ t

0

∫
R3
|u|2(φt +∆φ)+

∫ t

0

∫
R3
(|u|2 +2P)u ·∇φ .

4 This definition of suitable weak solutions is appropriate to work with the initial datum u0. For more
details compare the Sections 2 and 7 of [2].
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Suitable weak solutions are known to exist for all L2 initial data, see [27] or the
Appendix in [2]. Such solutions are also L2-weakly continuous as functions of time
(see [35], pp. 281–282), namely∫

R3
u(t,x)w(x) dx→

∫
R3

u(t ′,x)w(x) dx (2.2)

for all w ∈ L2(R3) as t→ t ′ (t, t ′ ∈ [0,+∞)); thus it makes sense to impose the initial
condition (2).

Next we define the parabolic cylinder of radius r and top point (t,x) as

Qr(t,x) :=
{
(s,y) : |x− y|< r, t− r2 < s < t

}
(2.3)

while the shifted parabolic cylinder is

Q∗r (t,x) := Qr(t + r2/8,x)≡
{
(s,y) : |x− y|< r, t−7r2/8 < s < t + r2/8

}
(2.4)

The crucial regularity result in [2] ensures that:

Lemma 2.2 There exists an absolute constant ε∗ such that if (u,P) is a suitable weak
solution of (1.1) and

limsup
r→0

1
r

∫ ∫
Q∗r (t,x)

|∇u|2 ≤ ε
∗, (2.5)

then (t,x) is a regular point.

We shall make frequent use of the following interpolation inequality from [1] (see
also [9], [10] for extensions of the inequality):

Lemma 2.3 Assume that

1. r ≥ 0, 0 < a≤ 1, γ < 3/r, α < 3/2, β < 3/2;
2. −γ +3/r = a(−α +1/2)+(1−a)(−β +3/2);
3. aα +(1−a)β ≤ γ;
4. when −γ +3/r =−α +1/2, assume also that γ ≤ a(α +1)+(1−a)β .

Then
‖σ γ

η u‖Lr(R3) ≤C‖σα
η ∇u‖a

L2(R3)
‖σβ

η u‖1−a
L2(R3)

, (2.6)

where ση := (η + |x|2)−1/2, η ≥ 0, with a constant C independent of η .

A key role in the following will be played by time-decay estimates for convolu-
tions with the heat and Oseen kernels. It is convenient to introduce the notation

Λ(α, p, p̃) := α +
2
p
− 2

p̃
. (2.7)

Proposition 2.4 ([22]) Let 1≤ p≤ q≤ ∞, 1≤ p̃≤ q̃≤ ∞ and

β >−3/q, α < 3−3/p, Λ(α, p, p̃)≥Λ(β ,q, q̃). (2.8)

For every (possibly zero) multi-index µ ,
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1. if |µ|+ 3
p −

3
q +α−β ≥ 0, then

‖|x|β ∂
µ et∆ u0‖Lq

|x|L
q̃
θ

.
1

t(|µ|+
3
p−

3
q+α−β )/2

‖|x|α u0‖Lp
|x|L

p̃
θ

, t > 0; (2.9)

2. if 1+ |µ|+ 3
p −

3
q +α−β > 0, then

‖|x|β ∂
µ et∆P∇ ·F‖

Lq
|x|L

q̃
θ

.
1

t(1+|µ|+
3
p−

3
q+α−β )/2

‖|x|α F‖
Lp
|x|L

p̃
θ

, t > 0. (2.10)

An easy consequence of Proposition 2.4 is the embedding

Lp
|x|α pd|x|L

p̃
dθ

↪→B−1+3/q
q,∞ if α = 1−3/p, p̃≥ 2p/(p−1), q≥max(p, p̃),

which is not needed in the following, but allows to compare Theorem 1.4 with earlier
results; recall also that B−1+3/q

q,∞ ↪→ BMO−1 for q > 3. Indeed, using estimate (2.9),
we can write

‖et∆
φ‖Lq(R3) ≤Ct−(3/p−3/q+α)/2‖|x|α φ‖

Lp
|x|L

p̃
θ

≡Ct−(1−3/q)/2‖|x|α φ‖
Lp
|x|L

p̃
θ

(2.11)

and then the embedding follows immediately from the following ‘caloric’ definition
of Besov spaces; see e.g. [19].

Definition 2.5 A distribution φ ∈ S ′(R3) belongs to B−1+3/q
q,∞ (R3) (q > 3) if and

only if
‖et∆

φ‖Lq(R3) ≤Ct−(1−3/q)/2 for 0 < t ≤ 1. (2.12)

The best constant C in (2.12) is equivalent to the norm ‖φ‖
B−1+3/q

q,∞ (R3)
.

We conclude this section with an estimate for singular integrals in mixed radial-
angular norms. Let K ∈C1(S2) with zero mean value and

T f (x) := PV
∫
R3

f (x− y)
K(ŷ)
|y|3

dy, ŷ =
y
|y|

.

Theorem 2.6 Let 1 < p < ∞, 1 < p̃ < ∞. Then

‖T f‖
Lp
|x|L

p̃
θ

. ‖ f‖
Lp
|x|L

p̃
θ

. (2.13)

The inequality (2.13) has been recently proved by A. Córdoba in the case p̃ = 2
([6], Theorem 2.1); essentially the same argument gives also the other cases.

Proof Consider first the case p > p̃. Let 1/q+ p̃/p = 1 and denote by X the set of all
g ∈S (R) with

∫ +∞

0 gq(ρ)ρ2dρ = 1. Then we can write

‖T f‖p̃

Lp
|x|L

p̃
θ

=
(∫ +∞

0
(∫

S2 |T f (ρ,θ)|p̃ dSθ

) p
p̃ ρ2 dρ

) p̃
p

= sup
g∈X

∫ +∞

0
∫
S2 |T f (ρ,θ)|p̃g(ρ)ρ2 dSθ dρ

= sup
g∈X

∫
R3 |T f (x)|p̃g(|x|) dx.
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Write I( f ,g) :=
∫
R3 |T f (x)|p̃g(|x|)dx. By Proposition 1 in [7] we have

I( f ,g).s
∫
R3 | f (x)|p̃ (Mgs(x))

1
s dx, (2.14)

for all 1 < s < ∞, where M is the Hardy–Littlewood maximal operator and gs(x) =
(g(|x|))s. Since Mgs is radially symmetric, this can be written

I( f ,g).s
∫ +∞

0
∫
S2 | f (ρ,θ)|p̃(Mgs(ρ))

1
s ρ2dSθ dρ. (2.15)

Now, for s < q = p
p−p̃ , Hölder’s inequality with exponents p/ p̃, q gives

I( f ,g) .
(∫ +∞

0
(∫

S2 | f (ρ,θ)|p̃dSθ

) p
p̃ ρ2 dρ

) p̃
p
(∫ +∞

0 (Mgs(ρ))
q
s ρ2dρ

) 1
q

. ‖ f‖ p̃

Lp
|x|L

p̃
θ

‖Mgs‖1/s
Lq/s(R3)

. ‖ f‖p̃

Lp
|x|L

p̃
θ

‖gs‖1/s
Lq/s(R3)

' ‖ f‖p̃

Lp
|x|L

p̃
θ

(∫ +∞

0 gq(ρ)ρ2 dρ
) 1

q = ‖ f‖p̃

Lp
|x|L

p̃
θ

and taking the supremum over all g ∈ X we get the claim in the case p > p̃. The case
p = p̃ is classical, and the case p < p̃ follows by duality.

Using the continuity of T in weighted Lebesgue spaces (see Stein [31])

‖|x|β T f‖Lp(R3) . ‖|x|β f‖Lp(R3) for 1 < p < ∞, − 3
p < β < 3− 3

p (2.16)

we can also obtain weighted versions of (2.13). In particular, by interpolation be-
tween (2.13) in the case (α0, p0, p̃0) = (0,2,10) and (2.16) in the case (α1, p1, p̃1) =
(−4/3,2,2), with interpolation parameter θ = 3/8 (⇒ (αθ , pθ , p̃θ ) = (−1/2,2,4)),
we get

‖|x|−1/2T f‖L2
|x|L

4
θ

. ‖|x|−1/2 f‖L2
|x|L

4
θ

. (2.17)

Remark 2.7 We denote with R j the Riesz transform in the direction of the j-th coordi-
nate and R := (R1,R2,R3). By (2.16, 2.17) the boundedness of R j in L2(R3, |x|−1dx)
and L2

|x|L
4
θ
(R3, |x|−1dx) follows, and so that of P≡ Id +R⊗R; see (1.4).

3 Proof of Theorem 1.4

We first need two technical lemmas. By standard machinery, integral estimates for
the heat flow and for the bilinear operator appearing in the Duhamel representation
(1.3) can be deduced by the time-decay estimates of Proposition 2.4.

Lemma 3.1 ([22]) Let β >−3/q, α < 3−3/p, 1≤ p̃≤ q̃≤ ∞, 1 < r < ∞ and µ a
(possibly zero) multi-index such that

1≤ p≤ q≤ ∞ if (|µ|+α−β )p+1 < 0,
1≤ p≤ q < 3p

(|µ|+α−β )p+1 if (|µ|+α−β )p+1≥ 0. (3.1)



Angular Integrability and Navier–Stokes equation 11

Assume further that

|µ|+α +3/p = β +3/q+2/r, Λ(α, p, p̃)≥Λ(β ,q, q̃). (3.2)

Then
‖|x|β ∂

µ et∆ u0‖Lr
t Lq
|x|L

q̃
θ

. ‖|x|α u0‖Lp
|x|L

p̃
θ

. (3.3)

Remark 3.2 Once we have assumed the scaling relation in (3.2), it is straightforward
to check that the assumption (3.1) is equivalent to p < r.

Proof The family of estimates (3.3) follows by the family of estimates (2.9) and
by the Marcinkiewickz interpolation theorem. The condition p < r, which as re-
marked above turns out to be equivalent to (3.1), is necessary in order to apply the
Marcinkiewickz theorem (see Proposition 3.4 in [22] for details).

Lemma 3.3 Let 3 < q < ∞, 2 < r < ∞ satisfying 2/r+3/q = 1. Then∥∥∥∫ t

0
e(t−s)∆

P∇ · (u⊗ v)(s) ds
∥∥∥

Lr
t Lq

x
. ‖u‖Lr

t Lq
x
‖v‖Lr

t Lq
x
. (3.4)

The inequality (3.4) is well known, see for instance Theorem 3.1(i) in [12]. The
Lr

t Lq
x Lebesgue spaces have been extensively used in the context of Navier–Stokes

equation since [12], [15].
Using the previous estimates, it is a simple matter to prove Theorem 1.4. We

follow the scheme of the proof of Theorem 20.1(B) in [20] and we take advantage of
the inequalities (2.9, 3.3).

Proof (Proof of Theorem 1.4)
Let p̃G := 2p/(p−1). We show that the space

X :=
{

u : ‖u‖Lr
t Lq

x
<+∞, sup

t>0
t1/2‖u‖L∞

x (t)<+∞

}
, (3.5)

equipped with the norm ‖ ·‖X := ‖ ·‖Lr
t Lq

x
+supt>0 t1/2‖ ·‖L∞

x (t), is an admissible path

space with adapted space X0 := Lp
|x|α pd|x|L

p̃G
θ

.

The estimate ‖et∆ f‖X . ‖ f‖X0 follows indeed by the inequalities (2.9, 3.3); it is
straightforward to check that (3.1) and p, p̃G ≤ q are equivalent5 to (1.15) and that the
last assumption in (3.2) and in (2.8) is satisfied because Λ(α, p, p̃G) = Λ(0,q,q) =
Λ(0,∞,∞) = 0. Notice also that the set of q for which the third inequality in (1.15) is
satisfied is not empty provided p < 5. It remains to show that

‖B(u,v)‖X . ‖u‖X‖v‖X .

The bound ‖B(u,v)‖Lr
t Lq

x
. ‖u‖Lr

t Lq
x
‖v‖Lr

t Lq
x

follows by Lemma 3.3. In order too esti-

mate supt>0 t1/2‖B(u,v)‖L∞(t), we split this quantity as

sup
t>0

t1/2‖B(u,v)‖L∞
x (t)≤ I + II (3.6)

5 Except that the value q = p is not allowed in (1.15).
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where
I = supt>0 t1/2

∥∥∫ t/2
0 e(t−s)∆P∇ · (u⊗ v)(s) ds

∥∥
L∞

x
(3.7)

II = supt>0 t1/2
∥∥∫ t

t/2 e(t−s)∆P∇ · (u⊗ v)(s) ds
∥∥

L∞
x
, (3.8)

and we use Minkowski inequality and the time-decay estimate (2.10). For I we have

I . sup
t>0

t1/2
∫ t/2

0

1
(t− s)(1+3/(q/2))/2 ‖u‖Lq

x
‖v‖Lq

x
(s) ds

. sup
t>0

t−3/q
∫ t/2

0
‖u‖Lq

x
‖v‖Lq

x
(s) ds

. sup
t>0

t−3/q‖u‖Lr
t Lq

x
‖v‖Lr

t Lq
x

(∫
χ[0,t/2](s) ds

)1− 2
r

. ‖u‖Lr
t Lq

x
‖v‖Lr

t Lq
x
t−3/q−2/r+1 = ‖u‖Lr

t Lq
x
‖v‖Lr

t Lq
x

while for II we have

II . sup
t>0

t1/2
∫ t

t/2

1
(t− s)1/2

1
s

(
s1/2‖u‖L∞

x (s)
)(

s1/2‖v‖L∞
x (s)

)
ds

.
(

sup
t>0

t1/2‖u‖L∞
x

)(
sup
t>0

t1/2‖v‖L∞
x

)
sup
t>0

t−1/2
∫ t

t/2

1
(t− s)1/2 ds

.
(

sup
t>0

t1/2‖u‖L∞
x

)(
sup
t>0

t1/2‖v‖L∞
x

)
sup
t>0

t−1/2
[
(t− s)1/2

]t/2

t

.
(

sup
t>0

t1/2‖u‖L∞
x

)(
sup
t>0

t1/2‖v‖L∞
x

)
.

Summing up we obtain

‖B(u,v)‖X . ‖u‖Lr
t Lq

x
‖v‖Lr

t Lq
x
+
(
supt>0 t1/2‖u‖L∞

x

)(
supt>0 t1/2‖v‖L∞

x

)
. ‖u‖X‖v‖X .

(3.9)
The existence of a unique solution u to Problem 1.3 satisfying

‖u‖Lr
t Lq

x
+ sup

t>0
t1/2‖u‖L∞

x (t). ‖|x|
α u0‖Lp

|x|L
p̃
θ

(3.10)

follows by Proposition 1.1 and by the obvious inequality

‖|x|α u0‖Lp
|x|L

p̃G
θ

. ‖|x|α u0‖Lp
|x|L

p̃
θ

. (3.11)

Finally, inequality (3.10) implies the boundedness of the solution u in (δ ,+∞)×
R3 for all δ > 0, and this implies smoothness of u (see Theorem 3.4 in [12] or [11],
[15], [28], [30], [32], [36]).

We denote with BC([0,∞);L2) the Banach space of bounded continuous functions
u : [0,∞)→ L2 equipped with the norm supt≥0 ‖u(t)‖L2 .
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Corollary 3.4 Assume u0 ∈ L2(R3) and that all the hypotheses of Theorem 1.4 are
satisfied. Then the solution u belongs to BC([0,∞);L2

x)∩L2
t Ḣ1

x . In particular u is a
strong solution of (1.1), u(t)→ u0 strongly in L2(R3) as t→ 0, and the energy identity
‖u(t)‖2

L2
x
+2

∫ t
0 ‖∇u‖2

L2
x
= ‖u0‖2

L2
x

holds for all t ≥ 0.

Proof Let X ,X0 be the same admissible and adapted spaces used in the proof of
Theorem 1.4. We shall show that the space X ∩BC([0,∞);L2

x)∩L2
t Ḣ1

x equipped with
the norm ‖ · ‖X +‖ · ‖L∞

t L2
x
+‖ · ‖L2

t Ḣ1
x

is an admissible path space with adapted space
X0∩L2

x equipped with the norm ‖ · ‖X0 +‖ · ‖L2
x
.

The estimate ‖et∆ f‖X∩BC([0,∞);L2
x)
. ‖ f‖X0∩L2

x
again follows by (2.9, 3.3), while

the bound ‖et∆ f‖L2
t Ḣ1

x
≤‖ f‖L2

x
, even if not covered by (3.3), is a well known property

of the heat kernel. Since we have already proved ‖B(u,v)‖X . ‖u‖X‖v‖X , it suffices
to show that

‖B(u,v)‖L∞
t L2

x∩L2
t Ḣ1

x
. ‖u‖X∩BC([0,∞);L2

x)∩L2
t Ḣ1

x
‖v‖X∩BC([0,∞);L2

x)∩L2
t Ḣ1

x
.

By the Minkowski and Hölder inequalities and (2.10)

‖B(u,v)‖L∞
t L2

x
. sup

t>0

∫ t

0

1
(t− s)1/2

1
s1/2

(
s1/2‖u‖L∞

x (s)
)
‖v‖L2

x
(s) ds (3.12)

≤
(

sup
t>0

t1/2‖u‖L∞
x (t)

)
‖v‖L∞

t L2
x

sup
t>0

∫ t

0
(t− s)−1/2s−1/2 ds.

Since
∫ t

0(t− s)−1/2s−1/2 ds≤C with C independent of t, (3.12) implies

‖B(u,v)‖L∞
t L2

x
.
(

sup
t>0

t1/2‖u‖L∞
x (t)

)
‖v‖L∞

t L2
x
. ‖u‖X∩BC([0,∞);L2

x)
‖v‖X∩BC([0,∞);L2

x)
.

(3.13)
Similarly, using Minkowski’s inequality, the Lp>1 boundedness of the Riesz trans-
form and (2.9)

‖∇B(u,v)‖L2
t L2

x
.
∥∥∥∫ t

0

1
(t− s)(1+3/q)/2 ‖(u ·∇)v‖

L2q/(q+2)
x

(s) ds
∥∥∥

L2
t
, (3.14)

where q > 3. Then by Hölder’s inequality and by the weak Young inequality for
convolutions

.
∥∥∥∫ ∞

0

1
(t− s)(1+3/q)/2 ‖u‖Lq

x
‖∇v‖L2

x
(s) ds

∥∥∥
L2

t

.
∥∥∥ 1
(t− s)(1+3/q)/2

∥∥∥
L2q/(q+3),∞

∥∥∥‖u‖Lq
x
‖∇v‖L2

x
ds
∥∥∥

L2q/(2q−3)
t

. ‖u‖Lr
t Lq

x
‖∇v‖L2

t L2
x
,

provided that 2/r + 3/q = 1. These inequalities allow us to apply Proposition 1.1.
Thus if

‖u0‖X0 = ‖|x|
α u0‖Lp

|x|L
p̃
θ

+‖u0‖L2
x
< ε̄, (3.15)

with an ε̄ possibly smaller than in Theorem 1.4, then u ∈ X ∩BC([0,∞);L2
x)∩L2

t Ḣ1
x .

On the other hand, rescaling the initial data and the solution as

uλ
0 = λu0(λx), uλ = λu(λ 2t,λx), λ > 0; (3.16)
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we see that all norms remain fixed with the exception of ‖uλ
0 ‖L2

x
, ‖uλ‖L∞

t L2
x
, ‖uλ‖L2

t Ḣ1
x

which goes to zero as λ → +∞. Thus the (3.15) is satisfied by uλ
0 , provided that

‖|x|α u0‖Lp
|x|L

p̃
θ

=: ρ < ε̄ and λ = λ (ρ) is large enough. In this way we find that

‖|x|α u0‖Lp
|x|L

p̃
θ

< ε̄ implies that uλ and hence u belongs to BC([0,∞);L2
x)∩L2

t Ḣ1
x .

In particular we have u(t)→ u0 strongly in L2(R3) as t → 0+. By this, and by
the smoothness of u, it follows that u is a strong solution of (1.1) which satisfies the
energy identity ‖u(t)‖2

L2
x
+2

∫ t
0 ‖∇u‖2

L2
x
= ‖u0‖2

L2
x
, t ≥ 0.

Remark 3.5 It is straightforward to check that the solution constructed in Corollary
3.4 is unique in the class of the weak solutions satisfying the energy inequality. More
precisely, if u′ is another weak solution of (1.1) satisfying ‖u′(t)‖2

L2
x
+2

∫ t
0 ‖∇u′‖2

L2
x
≤

‖u0‖2
L2

x
, t ≥ 0, then the boundedness of ‖u‖Lr

t Lq
x
< ∞ allows to apply the well known

Prodi–Serrin uniqueness criterion [25], [29] to conclude u = u′.

4 Proof of Theorem 1.5

We note that the statement of Theorem 1.5 is invariant with respect to the natural
scaling of the equation

u0(x)→ uλ
0 (x) := λu0(λx), u(t,x)→ uλ (t,x) := λu(λ 2t,λx). (4.1)

Thus it is sufficient to prove the result for uλ
0 (x), uλ (t,x) instead of u0(x), u(t,x), for

an appropriate choice of the parameter λ . We choose λ = λ such that the following
two quantities are equal:

Γ1(λ ,u0, p̃) :=
(∫ +∞

0
‖uλ

0 (ρ ·)‖
p̃/2

L p̃
θ

ρ dρ

) 1
2 ≡ λ

p̃
4−1‖|x|−

2
p̃ u0‖

p̃
4

L p̃/2
|x| L p̃

θ

(4.2)

Γ2(λ ,u0, p̃) :=
(∫ +∞

0
‖uλ

0 (ρ ·)‖
p̃

L p̃
θ

ρ dρ

) 1
2 ≡ λ

p̃
2−1‖|x|−

1
p̃ u0‖

p̃
2

L p̃
x
. (4.3)

It obvious that such a λ exists and one can easily calculate

Γ1(λ ,u0, p̃) = Γ2(λ ,u0, p̃) = [u0]p̃ ≡ ε. (4.4)

In the rest of the proof we shall drop the index λ and write simply u0 := uλ
0 , u := uλ .

We divide the proof into several steps. Note that in the course of the proof we
shall reserve the symbol Z ≥ 1 to denote several universal constants, which do not
depend on u0,u and p̃ ∈ [2,4), and which may be different from line to line (and of
course the final meaning of Z will be the maximum of all such constants).
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4.1 Decomposition of the data

For s > 0 to be chosen, we write

u0,<s(x) := u0(x) if |u0(x)|< s, u0,<s(x) := 0 elsewhere (4.5)

and we decompose the initial data as

u0 = v0 +w0, w0 := Pu0,<s, v0 := P(u0−u0,<s) (4.6)

which is possible since u0 = Pu0. We also write u0,≥s := u0− u0,<s. It is clear that
v0,w0 are divergence free. Moreover one has

‖|x|−1/2w0‖L2
|x|L

4
θ

≤ Zs1− p̃
4 (
∫
‖u0(ρ ·)‖p̃/2

L p̃
θ

ρ dρ)
1
2 = Zs1− p̃

4 ε

‖|x|−1/2v0‖L2
x

≤ Zs1− p̃
2 (
∫
‖u0(ρ ·)‖p̃

L p̃
θ

ρ dρ)
1
2 = Zs1− p̃

2 ε

(4.7)

for some universal constant Z ≥ 1.
To prove (4.7), we use first the fact that the Leray projection P is bounded on the

weighted spaces L2(R3, |x|−1dx) and L2
|x|L

4
θ
(R3, |x|−1dx) (see Remark 2.7), then the

elementary inequalities

‖|x|−1/2u0,<s‖L2
|x|L

4
θ

≤ s1− p̃
4 (
∫
‖u0(ρ ·)‖ p̃/2

L p̃
θ

ρ dρ)
1
2 , (4.8)

‖|x|−1/2u0,≥s‖L2
x
≤ s1− p̃

2 (
∫
‖u0(ρ ·)‖p̃

L p̃
θ

ρ dρ)
1
2 , (4.9)

and finally property (4.4). Now we choose

s =
2p̃−4
4− p̃

(4.10)

and this gives, with θ1 = θ1(p̃) and θ2 = θ2(p̃) defined as above (see (1.23)),

‖|x|−1/2w0‖L2
|x|L

4
θ

≤ Zθ1ε, ‖|x|−1/2v0‖L2
x
≤ Zθ2ε. (4.11)

Since the first norm in (4.11) is one of that we have considered in the well-
posedness Theorem 1.4, when Zθ1ε is small enough, we are allowed to look at the
(unique/smooth) solution w of the the Navier–Stokes equation with data w0. This so-
lution has good regularity properties and satisfies the powerful space-time integral
estimate (1.22).

This suggests to decompose the weak solution u = w+v, so that we reduce to in-
vestigate the regularity properties of v instead of that of u. Looking again at the (4.11)
and recalling θ2(p̃)→ 0 as p̃→ 4−, this decomposition turns out to be convenient
when p̃ is close to 4, since, in this case, a substantially better smallness assumption
on the data v0 is available.
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4.2 Decomposition of the weak solution

Consider the Cauchy problems
∂tw+(w ·∇)w+∇Pw−∆w = 0

∇ ·w = 0
w(0) = w0

Pw = R⊗R (w⊗w),

(4.12)

and 
∂tv+(v ·∇)v+(v ·∇)w+(w ·∇)v+∇Pv−∆v = 0

∇ · v = 0
v(0) = v0

Pv = R⊗R (v⊗ v)+2R⊗R (v⊗w).

(4.13)

Applying Theorem 1.4 (as in (1.21)) and Corollary 3.4, and recalling the first inequal-
ity in (4.11), we see that there exist two absolute constants ε1, C1 such that Problem
1.1 has a unique global smooth solution w provided the data satisfy

Zθ1ε < ε1, (4.14)

and in addition the solution w satisfies the estimate

‖w‖L8
t L4

x
≤C1‖|x|−1/2w0‖L2

|x|L
4
θ

≤C1Zθ1ε ⇒ ‖w‖8
L8

t L4
x
≤C8

1(Zθ1ε)7 ·Zθ1ε.

(4.15)
By possibly increasing Z by a factor bigger than both ε

−1
1 and C8

1 , this implies the
following: if ε satisfies

Zθ1ε ≤ 1 (4.16)

then Problem 4.12 has a unique global smooth solution w ∈ BC([0,∞);L2
x)∩ L2

t Ḣ1
x

such that
‖w‖8

L8
t L4

x
≤ Zθ1ε. (4.17)

As a consequence, the function v = u−w is a weak solution of the second Cauchy
Problem 4.13. Moreover, since u is a suitable weak solution, the function v inherits
similar properties (we shall say for short that v is a suitable weak solution of the
modified Problem 4.13).

4.3 A change of variables

Let ξ ∈ R3, T > 0 and consider the segment

L(T,ξ ) := {(s,ξ s) : s ∈ (0,T )}.

We ask for which (T,ξ ) the set L(T,ξ ) is a regular set. To this purpose we introduce
the transformation

(t,y) = (t,x−ξ t), vξ (t,y) = v(t,x), wξ (t,y) = w(t,x), (4.18)
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which takes (4.12) into the system
∂twξ +((wξ −ξ ) ·∇)wξ +∇Pwξ

−∆wξ = 0
∇ ·wξ = 0
wξ (0) = w0

Pwξ
= R⊗R (wξ ⊗wξ ),

(4.19)

and (4.13) into the system
∂tvξ +((vξ −ξ ) ·∇)vξ +(vξ ·∇)wξ +(wξ ·∇)vξ +∇Pvξ

−∆vξ = 0
∇ · vξ = 0
vξ (0) = v0

Pvξ
= R⊗R (vξ ⊗ vξ )+2R⊗R (vξ ⊗wξ ).

(4.20)

Note that this change of coordinates maps L(T,ξ ) in (0,T )×{0}. Now we fix an
arbitrary M ≥ 1 and we define the set

S(M,T,ξ ) :=
{

s ∈ [0,T ] :
∫ s+T/M

s

∫
R3
|y|−1|∇vξ (τ,y)|2 dτdy > M

}
(4.21)

and the number s≥ 0

s̄ :=
{

inf{s ∈ S(M,T,ξ )} if S(M,T,ξ ) 6= /0
T otherwise. (4.22)

From the definition of s̄ one has immediately∫ s̄

0

∫
R3
|y|−1|∇vξ (τ,y)|2 dτdy≤M(M+1)≤ 2M2. (4.23)

We next distinguish two cases.

4.4 First case: s̄ = T

In this case the entire segment L(T,ξ ) is a regular set. To prove this, we note first that
by (4.23) ∫ T

0

∫
R3

|∇v(τ,x)|2

|x−ξ τ|
dτdx <+∞. (4.24)

Suppose we can also prove that∫ T

0

∫
R3

|∇w(τ,x)|2

|x−ξ τ|
dτdx <+∞. (4.25)

Then summing the two we obtain∫ T

0

∫
R3

|∇u(τ,x)|2

|x−ξ τ|
dτdx <+∞. (4.26)
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Now let 0 < s < T , and let r > 0 be so small that 0 < s−7r2/8 < s+ r2/8 < T and
|ξ |r ≤ 1. For each (τ,x) ∈ Q∗r (s,ξ s) we have

|x−ξ τ| ≤ |x−ξ s|+ |ξ ||s− τ| ≤ r+ r2|ξ | ≤ 2r (4.27)

which implies

1
r

∫ ∫
Q∗r (s,ξ s)

|∇u(τ,x)|2 dτdx≤ 2
∫ s+ 1

8 r2

s− 7
8 r2

∫
R3

|∇u(τ,x)|2

|x−ξ τ|
dτdx. (4.28)

By continuity of the integral function, we obtain that the regularity condition (2.5) is
satisfied at all (s,ξ s) ∈ L(T,ξ ), i.e. L(T,ξ ) is a regular set as claimed.

It remains to prove (4.25). By (4.17, 4.11) we know that

‖wξ‖L8
t L4

x
= ‖w‖L8

t L4
x
<+∞, ‖|x|−1/2w0‖L2(R3) <+∞ (4.29)

and that w, hence wξ , is a smooth solution. Thus we can write the energy inequality∫
R3 φ |wξ |2dx + 2

∫ t
0
∫
R3 φ |∇wξ |2 ≤

∫
R3 φ |w0|2dx (4.30)

+
∫ t

0
∫
R3 |wξ |2(φt −ξ ·∇φ +∆φ)+

∫ t
0
∫
R3(|wξ |2 +2Pwξ

)wξ ·∇φ

where Pwξ
= R⊗R (wξ ⊗wξ ) and φ ∈C∞

c (R3) is any test function φ ≥ 0. We choose

φ(y) := ση(y)χ(δ |y|), ση(y) := (η + |y|2)− 1
2 η ,δ > 0 (4.31)

where χ ≥ 0 is a cut-off function supported in [−1,1] and equal to 1 near 0 (compare
with the proof of Lemma 8.3 in [2]). Letting δ → 0 and using the inequalities

|∇ση | ≤ (η + |y|2)−1 = σ2
η , ∆ση < 0, (4.32)

we obtain[∫
R3 ση |wξ |2

]t
0 + 2

∫ t
0
∫
R3 ση |∇wξ |2 ≤

≤ |ξ |
∫ t

0
∫
R3 σ2

η |wξ |2 +
∫ t

0
∫
R3 σ2

η(|wξ |3 +2|Pwξ
||wξ |).

Our goal is to prove an integral inequality for the quantities

aη(t) =
∫
R3

ση(y)|wξ (t,y)|2dy, Bη(t) =
∫ t

0

∫
R3

ση(y)|∇wξ (τ,y)|2dydτ. (4.33)

To proceed, we use the weighted Lp inequality for the Riesz transform ([31]), uniform
in η ≥ 0

‖σm
η Rφ‖Ls ≤ Z‖σm

η φ‖Ls , 1 < s < ∞, m ∈
(
− 3(s−1)

s , 3
s

)
. (4.34)

For the pressure term we have, using (2.6) and (4.34),

2
∫
R3 σ2

η |Pwξ
||wξ |= 2

∫
R3 σ2

η |wξ ||R⊗R (wξ ⊗wξ )| (4.35)

≤ ‖ση R⊗R (wξ ⊗wξ )‖L8/5‖ση wξ‖L8/3 . ‖ση |wξ |2‖L8/5‖ση wξ‖L8/3

≤ ‖wξ‖L4‖ση wξ‖2
L8/3 . ‖wξ‖L4‖σ1/2

η ∇wξ‖
7/4
L2 ‖σ

1/2
η wξ‖

1/4
L2

= ‖wξ‖L4 Ḃ7/8
η a1/8

η ≤
Ḃη

6
+C‖wξ‖8

L4 ·aη
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for some universal constant C. In a similar way,∫
R3 σ2

η |wξ |3 ≤ ‖wξ‖L4‖σ2
η |wξ |2‖L4/3 = ‖wξ‖L4‖ση wξ‖2

L8/3 (4.36)

. ‖wξ‖L4‖σ1/2
η ∇wξ‖

7/4
L2 ‖σ

1/2
η wξ‖

1/4
L2 ≤

Ḃη

6
+C‖wξ‖8

L4aη

and

|ξ |
∫
R3 σ2

η |wξ |2 . |ξ | · ‖σ
1/2
η ∇wξ‖L2‖σ1/2

η wξ‖L2 = |ξ |(Ḃη aη)
1/2 ≤ Ḃη

6 +C|ξ |2aη .
(4.37)

Plugging these inequalities in the energy estimate we get

aη(t)+Bη(t)≤ aη(0)+
∫ t

0

(
C|ξ |2 +3C‖wξ (s, ·)‖8

L4

)
a(s) ds, (4.38)

and passing to the limit η → 0 we obtain, for some larger universal constant C (note
that ‖wξ (s)‖L4 = ‖w(s)‖L4 for all s)

a(t)+B(t)≤ a(0)+C
∫ t

0

(
|ξ |2 +‖w(s, ·)‖8

L4

)
a(s) ds, (4.39)

where

a(t) =
∫
R3
|y|−1|wξ (t,y)|2dy, B(t) =

∫ t

0

∫
R3
|y|−1|∇wξ (τ,y)|2dydτ. (4.40)

By a standard application of Gronwall’s inequality, we obtain a(t)<+∞ for all t ≥ 0
which implies also B(t)<+∞ for all t ≥ 0 and thus the (4.25), as claimed.

4.5 Second case: 0≤ s̄ < T

Since vξ is a suitable weak solution of Problem 4.20, the following modified energy
inequality is valid (see e.g. [3] for details): for all t ≥ 0 and 0≤ φ ∈C∞

c ([0,∞)×R3),
we have ∫

R3 φ(t,y) |vξ (t,y)|2dy+2
∫ t

0
∫
R3 φ |∇vξ |2 (4.41)

≤
∫
R3 φ(0,y)|v0(y)|2dy+

∫ t
0
∫
R3 |vξ |2(φt −ξ ·∇φ +∆φ)

+
∫ t

0
∫
R3(|vξ |2 +2Pvξ

)vξ ·∇φ +
∫ t

0
∫
R3 |vξ |2(wξ ·∇φ)

+ 2
∫ t

0
∫
R3(vξ ·wξ )(vξ ·∇φ)+φ(vξ ·∇)vξ ·wξ

which implies∫
R3 φ(t,y) |vξ (t,y)|2dy+2

∫ t
0
∫
R3 φ |∇vξ |2 ≤ (4.42)

≤
∫
R3 φ(0,y)|v0(y)|2dy+

∫ t
0
∫
R3 |vξ |2(φt −ξ ·∇φ +∆φ)

+
∫ t

0
∫
R3(|vξ |2 +2Pvξ

)vξ ·∇φ +
∫ t

0
∫
R3 3|vξ |2|wξ ||∇φ |+18|φ ||vξ ||∇vξ ||wξ |.
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By a standard approximation procedure (see the proof of Lemma 8.3 in [2]) the esti-
mate is valid for any test function of the form

φ(t,y) := ψ(t)φ1(y) (4.43)

with φ1 ∈C∞
c (R3), φ1 ≥ 0, and

ψ : [0,∞)→ [0,∞) absolutely continuous with ψ̇ ∈ L1([0,∞)). (4.44)

We shall choose here

ψ(t)≡ 1, φ1 = ση(y)χ(δ |y|), (4.45)

where η ,δ > 0,

ση(y) = (η + |y|2)−
1
2 , (4.46)

and χ : [0,∞)→ [0,1] is a smooth nonincreasing function such that

χ = 1 on [0,1], χ = 0 on [2,+∞]. (4.47)

Passing to the limit δ → 0 in the energy inequality we obtain[∫
R3 ση |vξ |2

]t
0 + 2

∫ t
0
∫
R3 ση |∇vξ |2 ≤ (4.48)

≤
∫ t

0
∫
R3 |vξ |2(−ξ ·∇ση +∆ση)+

∫ t
0
∫
R3(|vξ |2 +2Pvξ

)vξ ·∇ση

+ 18
∫ t

0
∫
R3 ση |vξ ||∇vξ ||wξ |+3

∫ t
0
∫
R3 |vξ |2|wξ ||∇ση |.

Note that a similar argument is used in [2], one of the differences here being the
presence of the last two perturbative terms, which we control using (4.17). Recalling
(4.32), we deduce the estimate

[∫
R3 ση |vξ |2

]t
0 + 2

∫ t
0
∫
R3 ση |∇vξ |2 ≤ |ξ |

∫ t
0
∫
R3 σ2

η |vξ |2 (4.49)

+
∫ t

0
∫
R3 σ2

η(|vξ |3 +2|Pvξ
||vξ |+3|vξ |2|wξ |)+18ση |vξ ||∇vξ ||wξ |.

We can now proceed as in the first case, using (4.49) to obtain a Gronwall type in-
equality for the quantities

aη(t) =
∫
R3

ση(y)|vξ (t,y)|2dy, Bη(t) =
∫ t

0

∫
R3

ση(y)|∇vξ (τ,y)|2dydτ. (4.50)

We first estimate the term in Pvξ
; recall that

Pvξ
= R⊗R (vξ ⊗ vξ )+2R⊗R (vξ ⊗wξ ). (4.51)

We have

2
∫
R3 σ2

η |Pvξ
||vξ | ≤ 2

∫
R3 σ2

η |vξ ||R⊗R (vξ ⊗ vξ )|

+ 4
∫
R3 σ2

η |vξ ||R⊗R (vξ ⊗wξ )|=: I + II.
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Here and in the following, as usual, Z denotes several universal constants, possibly
different from line to line. By (4.34) we can write

I ≤ 2‖ση R⊗R (vξ ⊗ vξ )‖L2‖ση vξ‖L2 ≤ Z‖ση |vξ |2‖L2‖ση vξ‖L2 (4.52)

≤ Z‖σ1/2
η vξ‖2

L4‖ση vξ‖L2

and then by the Caffarelli–Kohn–Nirenberg inequality we obtain

I ≤ Z‖σ1/2
η ∇vξ‖

3/2
L2 ‖σ

1/2
η vξ‖

1/2
L2 · ‖σ1/2

η ∇vξ‖
1/2
L2 ‖σ

1/2
η vξ‖

1/2
L2 (4.53)

= ZḂη a1/2
η ≤

Ḃη

6
+ZḂη aη .

In a similar way we have

II ≤ 4‖ση R⊗R (vξ ⊗ wξ )‖
L

8
5
‖ση vξ‖

L
8
3

≤ Z‖ση |vξ ||wξ |‖
L

8
5
‖ση vξ‖

L
8
3
≤ Z‖wξ‖L4‖ση vξ‖2

L
8
3

and again by the CKN inequality

II ≤ Z‖wξ‖L4‖σ1/2
η vξ‖

1/4
L2 ‖σ

1/2
η ∇vξ‖

7/4
L2 ,= Z‖wξ‖L4a

1
8
η Ḃη

7
8 ≤

Ḃη

6
+Z‖wξ‖8

L4aη .

(4.54)
Consider now the other terms in (4.49). Proceeding as above, we have

|ξ |
∫
R3 σ2

η |vξ |2 ≤ Z|ξ |‖σ1/2
η ∇vξ‖L2‖σ1/2

η vξ‖L2 = Z|ξ |(Ḃη aη)
1/2 ≤ Ḃη

6 +Z|ξ |2aη ;
(4.55)

and∫
R3 σ2

η |vξ |3 = ‖σ
2/3
η vξ‖3

L3 ≤ Z‖σ1/2
η ∇vξ‖2

L2‖σ
1/2
η vξ‖L2 = ZḂη a1/2

η ≤ Ḃη

6 +ZḂη aη

(4.56)
while for the perturbative terms we can write

3
∫
R3 σ2

η |vξ |2|wξ | ≤ 3‖wξ‖L4‖ση vξ‖2
L8/3 ≤ Z‖wξ‖L4‖σ1/2

η vξ‖
1/4
L2 ‖σ

1/2
η ∇vξ‖

7/4
L2

= Z‖wξ‖L4a1/8
η Ḃ7/8

η ≤
Ḃη

6
+Z‖wξ‖8

L4aη (4.57)

and

18
∫
R3 ση |vξ ||∇vξ ||wξ | ≤ 18‖σ1/2

η ∇vξ‖L2‖wξ‖L4‖σ1/2
η vξ‖L4 (4.58)

≤ Z‖σ1/2
η ∇vξ‖L2‖wξ‖L4‖σ1/2

η ∇vξ‖
3/4
L2 ‖σ

1/2
η vξ‖

1/4
L2

= Z‖wξ‖L4 Ḃ7/8
η a1/8

η ≤
Ḃη

6
+Z‖wξ‖8

L4aη .

Now recalling (4.49), summing all the inequalities and absorbing a term
∫ t

0 Ḃη(s)ds=
Bη(t) from the left hand side, we obtain

aη(t)+Bη(t)≤ aη(0)+Z
∫ t

0

(
|ξ |2 + Ḃη(s)+‖wξ (s, ·)‖8

L4

)
a(s) ds, (4.59)



22 Piero D’Ancona, Renato Lucà

and passing to the limit η → 0, we arrive at the estimate

a(t)+B(t)≤ a(0)+Z
∫ t

0

(
|ξ |2 + Ḃ(s)+‖wξ (s, ·)‖8

L4

)
a(s) ds, (4.60)

for some universal constant Z, where

a(t) =
∫
R3
|y|−1|vξ (t,y)|2dy, B(t) =

∫ t

0

∫
R3
|y|−1|∇vξ (τ,y)|2dydτ. (4.61)

Noting ‖wξ (s, ·)‖L4 = ‖w(s, ·)‖L4 , by a standard application of Gronwall’s lemma we
get for 0≤ t ≤ s̄

a(t)≤ a(0)(1+ZAeZA), A = B(s̄)+‖w‖8
L8

t L4
x
+ s̄|ξ |2. (4.62)

By (4.23, 4.17) we have A ≤ 2M2 + Z + s̄|ξ |2, while by (4.11) we have a(0) ≤
(Zθ2ε)2. If we restrict to the vectors ξ such that6

|ξ |2s̄≤M2 (4.63)

the estimate becomes

a(s̄)≤ (Zθ2ε)2(1+(3M2 +Z)e3M2+Z) (4.64)

and taking a possibly larger universal constant Z, this implies

a(s̄)≤ Ze4M2
(θ2ε)2. (4.65)

Notice that (4.63) is satisfied provided that

L(T,ξ )⊂
{
(τ,z) : τ ≥ |z|

2

M2

}
. (4.66)

We now repeat the argument, starting from the point (s̄, s̄ξ ). We write the anal-
ogous of the energy inequality (4.42) on the time interval s̄ ≤ s ≤ t with t ≤ s̄+T ,
choosing as test function φ(t,y) :=ψη(t)ση(y)χ(δ |y|) where χ and ση are as before,
while

ψη(t) := e−kBs̄,η (t), Bs̄,η(t) :=
∫ t

s̄

∫
R3

ση |∇vξ |2 (4.67)

with k a positive constant to be specified. Note that Bs̄,η is bounded if η > 0 by the
properties of v. In this way we obtain, letting δ → 0,

[
∫
R3 ψη ση |vξ |2]ts̄ +2

∫ t
s̄
∫
R3 ψη ση |∇vξ |2 ≤

≤
∫ t

s̄
∫
R3 ψη |vξ |2(−kḂs̄,η ση −ξ ·∇ση +∆ση)+

∫ t
s̄
∫
R3 ψη(|vξ |2 +2Pvξ

vξ ) ·∇ση

+ 18
∫ t

s̄
∫
R3 ψη ση |vξ ||∇vξ ||wξ |+3

∫ t
s̄
∫
R3 ψη |vξ |2|wξ ||∇ση |,

6 Remember that s̄ is a function of ξ .
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for s̄≤ t ≤ s̄+T , and this implies, recalling (4.32),

[
∫
R3 ψη ση |vξ |2]ts̄ +2

∫ t
s̄
∫
R3 ψη ση |∇vξ |2 ≤ (4.68)

≤
∫ t

s̄
∫
R3 ψη |vξ |2(|ξ |σ2

η − kḂs̄,η ση)

+
∫ t

s̄ ψη

∫
R3 σ2

η(|vξ |3 +2|Pvξ
||vξ |+3|vξ |2|wξ |)+18ση |vξ ||∇vξ ||wξ |.

Our goal now is to prove an integral inequality involving the quantities

aη(t) =
∫
R3

ση(y)|vξ (t,y)|2dy, Bs̄,η(t) =
∫ t

s̄

∫
R3

ση(y)|∇vξ (τ,y)|2dydτ.

(4.69)
We estimate the terms at the right hand side of (4.68). First of all we have

2
∫
R3 σ2

η |Pvξ
||vξ | ≤ 2

∫
R3 σ2

η |vξ ||R⊗R (vξ ⊗ vξ )|

+ 4
∫
R3 σ2

η |vξ ||R⊗R (vξ ⊗wξ )|=: I + II.

With computations similar to those of the first step, using the boundedness of the
Riesz transform and the CKN inequality, we obtain

I ≤
Ḃs̄,η

8
+ZḂs̄,η aη , (4.70)

and, by possibly increasing the value of Z at each step,

II ≤ Z‖wξ‖L4‖σ1/2
η vξ‖

1/4
L2 ‖σ

1/2
η ∇vξ‖

7/4
L2 = Z‖wξ‖L4a1/8

η Ḃ7/8
s̄,η (4.71)

≤
Ḃs̄,η

8
+‖wξ‖8

L4 +Zaη Ḃs̄,η .

Next we have

|ξ |
∫
R3 σ2

η |vξ |2 = |ξ |‖ση vξ‖2
L2 ≤ Z|ξ |‖σ1/2

η ∇vξ‖L2 (4.72)

= Z|ξ |(Ḃs̄,η aη)
1/2 ≤ |ξ |2 +ZḂs̄,η aη ;

and∫
R3 σ2

η |vξ |3 = ‖σ
2/3
η vξ‖3

L3 ≤Z‖σ1/2
η ∇vξ‖2

L2‖σ
1/2
η vξ‖L2 =ZḂs̄,η a1/2

η ≤ Ḃs̄,η
8 +ZḂs̄,η aη .

(4.73)
Finally, for the perturbative terms we have

3
∫
R3 σ2

η |vξ |2|wξ | ≤ 3‖wξ‖L4‖ση vξ‖2
L8/3 (4.74)

≤ Z‖wξ‖L4‖σ1/2
η vξ‖

1/4
L2 ‖σ

1/2
η ∇vξ‖

7/4
L2

= Z‖wξ‖L4a1/8
η Ḃ7/8

s̄,η ≤
Ḃs̄,η

8
+‖wξ‖8

L4 +ZḂs̄,η aη ,

and

18
∫
R3 ση |vξ ||∇vξ ||wξ | ≤ 18‖σ1/2

η ∇vξ‖L2‖wξ‖L4‖σ1/2
η vξ‖L4 (4.75)

≤ Z‖σ1/2
η ∇vξ‖L2‖wξ‖L4‖σ1/2

η ∇vξ‖
3/4
L2 ‖σ

1/2
η vξ‖

1/4
L2

= Z‖wξ‖L4a1/8
η Ḃ7/8

s̄,η ≤
Ḃs̄,η

8
+‖wξ‖8

L4 +ZḂs̄,η aη ,
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We now plug the previous inequalities in (4.68) and we obtain

aη(t)ψη(t) − aη(s̄)+2
∫ t

s̄ Ḃs̄,η(s)ψη(s)ds≤
≤
∫ t

s̄ ψη(s)[ 5
8 Ḃs̄,η +6ZḂs̄,η aη + |ξ |2 +3‖wξ‖8

L4 − kḂs̄,η aη ](s)ds.

We subtract the first term at the right hand side from the left hand side; then we
choose k = 6Z and note that∫ t

s̄ Ḃs̄,η ψη ≡− 1
6Z
∫ t

s̄ ψ̇η =
ψη (s̄)−ψη (t)

6Z =
1−ψη (t)

6Z (4.76)

so that, for s̄≤ t ≤ s̄+T , we obtain

aη(t)ψη(t)−aη(s̄)+
1−ψη (t)

6Z ≤ |ξ |2
∫ t

s̄ ψη(s)ds+3
∫ t

s̄ ‖wξ (s, ·)‖8
L4ds. (4.77)

Consider now the increasing function, for t ≥ s̄,

Bs̄(t) :=
∫ t

s̄

∫
R3
|y|−1|∇vξ (τ,y)|2dydτ (4.78)

which may become infinite at some point t = t0 > s̄. By the definition of s̄, we know
that Bs̄(t)≥M for t ≥ s̄+T/M; since Bs̄,η → Bs̄ pointwise as η → 0, we have also

Bs̄,η(s)≥ M
2 for s≥ s̄+ T

M and η small enough. (4.79)

Using this estimate for s ≥ s̄+T/M and the obvious one Bs̄,η ≥ 0 for s < s̄+T/M,
we have easily∫ s̄+T

s̄ ψη(s) ds =
∫ s̄+T

s̄ e−6ZBs̄,η (s) ds≤ T
M + e−3ZM

(
T − T

M

)
≤ 2T

M (4.80)

(remember Z ≥ 1). We now use the estimate a(s̄) ≤ Ze4M2
(θ2ε)2 (proved in (4.65))

and note that we can assume

θ2ε ≤ 1 ⇒ a(s̄)≤ Ze4M2
θ2ε. (4.81)

Moreover by (4.17) we have also

‖wξ‖8
L8

t L4
x
= ‖w‖8

L8
t L4

x
≤ Zθ1ε (4.82)

so that inequality (4.77) implies

(aη(t)− 1
6Z )ψη(t)+ 1

6Z −3Zθ1ε−Ze4M2
θ2ε−2|ξ |2 T

M ≤ 0 (4.83)

or equivalently

aη(t)+( 1
6Z −3Zθ1ε−Ze4M2

θ2ε−2|ξ |2 T
M )e6ZBs̄,η (t) ≤ 1

6Z . (4.84)

We now assume ε is so small that

3Zθ1ε ≤ 1
30Z , Ze4M2

θ2ε ≤ 1
30Z , (4.85)

(this implies also (4.81) and (4.16)), so that (4.84) implies

aη(t)+( 1
10Z −2|ξ |2 T

M )e6ZBs̄,η (t) ≤ 1
6Z . (4.86)
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Assume in addition that ξ satisfies

( 1
10Z −2|ξ |2 T

M )> 0 i.e. |ξ |2T < M
20Z . (4.87)

Note that this condition is stronger than the first condition (4.63) on ξ , i.e. |ξ |2s̄≤M2,
since M,Z ≥ 1 and s̄≤ T . Then, if we let η → 0, we have

aη(t)→ a(t) :=
∫
R3 |y|−1|vξ (t,y)|2dy, (4.88)

Bs̄,η(t)→ Bs̄(t) :=
∫ t

s̄
∫
R3 |y|−1|∇vξ (s,y)|2dyds (4.89)

and (4.86) implies, for all s̄≤ t ≤ s̄+T

a(t)+( 1
10Z −2|ξ |2 T

M )e6ZBs̄(t) ≤ 1
6Z . (4.90)

Thus, using (4.87), we see that a(t) and Bs̄(t) are finite for s̄≤ t ≤ s̄+T . Since by the
definition of s̄ we already know that B(s̄)≤ 2M2 <+∞, we conclude that

B(s)<+∞ for all 0≤ s≤ s̄+T. (4.91)

In particular we have

B(T ) =
∫ T

0
∫
|y|−1|∇vξ (s,y)|2dyds≡

∫ T
0
∫
|x− sξ |−1|∇v(s,x)|2dyds <+∞ (4.92)

and then the same argument used to conclude the proof in the first case (s̄ = T ) gives
also in the second case (s̄ < T ) that L(T,ξ ) is a regular set, provided (4.85, 4.87) are
satisfied.

4.6 Conclusion of the proof

Summing up, we have proved that there exists a universal constant Z such that for
any p̃ ∈ [2,4), M ≥ 1, T > 0 and ξ ∈ R3 the following holds: if ε ≡ [u0]p̃ is small
enough to satisfy (4.85), and T,ξ are such that (4.87) holds, then the segment L(T,ξ )
is a regular set for the weak solution u.

Now define
δ =

1
90Z2 . (4.93)

Then (4.85) is implied by

θ1ε ≤ δ , θ2ε ≤ δe−4M2
(4.94)

while (4.87) is implied by

|ξ |2T < Mδ ⇐⇒ T > |T ξ |2
Mδ

(4.95)

or equivalently

(T,T ξ ) ∈ΠMδ , ΠMδ :=
{
(t,x) : t > |x|2

Mδ

}
. (4.96)

In other words, if ε satisfies (4.94) and (T,T ξ ) belongs to ΠMδ , then L(T,ξ ) is a
regular set. Since ΠMδ is the union of such segments for arbitrary ξ ∈R3, T > 0, we
conclude that ΠMδ is a regular set for the solution u, provided (4.94) holds.
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