Let $\La$ be a Schr\"odinger operator with inverse square potential $a|x|^{-2}$ on $\Rd, d\geq 3$. The main aim of this paper is to prove weighted estimates for fractional powers of $\La$. The proof is based on weighted Hardy inequalities and weighted inequalities for square functions associated to $\La$. As an application, we obtain smoothing estimates regarding the propagator $e^{it\La}$.
Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials / Bui, The Anh; D'Ancona, Piero Antonio; Duong, Xuan Thinh; Li, Ji; Ly, Fu Ken. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 262:3(2017), pp. 2771-2807. [10.1016/j.jde.2016.11.008]
Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials
D'ANCONA, Piero Antonio;
2017
Abstract
Let $\La$ be a Schr\"odinger operator with inverse square potential $a|x|^{-2}$ on $\Rd, d\geq 3$. The main aim of this paper is to prove weighted estimates for fractional powers of $\La$. The proof is based on weighted Hardy inequalities and weighted inequalities for square functions associated to $\La$. As an application, we obtain smoothing estimates regarding the propagator $e^{it\La}$.File | Dimensione | Formato | |
---|---|---|---|
Bui_Weighted-estimates_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
495.6 kB
Formato
Adobe PDF
|
495.6 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.