Let $\La$ be a Schr\"odinger operator with inverse square potential $a|x|^{-2}$ on $\Rd, d\geq 3$. The main aim of this paper is to prove weighted estimates for fractional powers of $\La$. The proof is based on weighted Hardy inequalities and weighted inequalities for square functions associated to $\La$. As an application, we obtain smoothing estimates regarding the propagator $e^{it\La}$.

Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials / Bui, The Anh; D'Ancona, Piero Antonio; Duong, Xuan Thinh; Li, Ji; Ly, Fu Ken. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 262:3(2017), pp. 2771-2807. [10.1016/j.jde.2016.11.008]

Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials

D'ANCONA, Piero Antonio;
2017

Abstract

Let $\La$ be a Schr\"odinger operator with inverse square potential $a|x|^{-2}$ on $\Rd, d\geq 3$. The main aim of this paper is to prove weighted estimates for fractional powers of $\La$. The proof is based on weighted Hardy inequalities and weighted inequalities for square functions associated to $\La$. As an application, we obtain smoothing estimates regarding the propagator $e^{it\La}$.
2017
Heat kernel estimate; inverse-square potential; Littlewood–Paley theory; negative power; smoothing estimate; analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials / Bui, The Anh; D'Ancona, Piero Antonio; Duong, Xuan Thinh; Li, Ji; Ly, Fu Ken. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 262:3(2017), pp. 2771-2807. [10.1016/j.jde.2016.11.008]
File allegati a questo prodotto
File Dimensione Formato  
Bui_Weighted-estimates_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 495.6 kB
Formato Adobe PDF
495.6 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact