Estimating the positions of a set of moving objects captured from a network of cameras is still an open problem in Computer Vision. In this paper, a distributed and real-time approach for tracking multiple objects on multiple cameras is presented. A quantitative comparison with six state-of-the-art methods has been carried out on the publicly available PETS 2009 data set, demonstrating the eectiveness of the algorithm. Moreover, the proposed method has been tested also on a multi-camera soccer data set, showing its data fusion capabilities.

A distributed approach for real-time multi-camera multiple object tracking / Previtali, Fabio; Bloisi, Domenico Daniele; Iocchi, Luca. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - ELETTRONICO. - 28:2-3(2017), pp. 421-430. [10.1007/s00138-017-0827-5]

A distributed approach for real-time multi-camera multiple object tracking

PREVITALI, FABIO
;
BLOISI, Domenico Daniele;IOCCHI, Luca
2017

Abstract

Estimating the positions of a set of moving objects captured from a network of cameras is still an open problem in Computer Vision. In this paper, a distributed and real-time approach for tracking multiple objects on multiple cameras is presented. A quantitative comparison with six state-of-the-art methods has been carried out on the publicly available PETS 2009 data set, demonstrating the eectiveness of the algorithm. Moreover, the proposed method has been tested also on a multi-camera soccer data set, showing its data fusion capabilities.
2017
Distributed data association; Distributed multiple object tracking; Real-time data processing; Software; Hardware and Architecture; 1707; Computer Science Applications1707 Computer Vision and Pattern Recognition
01 Pubblicazione su rivista::01a Articolo in rivista
A distributed approach for real-time multi-camera multiple object tracking / Previtali, Fabio; Bloisi, Domenico Daniele; Iocchi, Luca. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - ELETTRONICO. - 28:2-3(2017), pp. 421-430. [10.1007/s00138-017-0827-5]
File allegati a questo prodotto
File Dimensione Formato  
Previtali_A-Distributed-Approach_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/944538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact