Background: Under conditions of Zn(II) deficiency, the most relevant high affinity Zn(II) transport system synthesized by many Gram-negative bacteria is the ZnuABC transporter. ZnuABC is absent in eukaryotes and plays an important role in bacterial virulence. Consequently, ZnuA, the periplasmic component of the transporter, appeared as a good target candidate to find newcompounds able to contrast bacterial growth by interferingwith Zn(II) uptake. Methods: Antibacterial activity assays on selected compounds from and in-house library against Salmonella enterica serovar Typhimurium ATCC14028 were performed. The X-ray structure of the complex formed by SeZnuA with an active compound was solved at 2.15 Å resolution. Results: Two di-aryl pyrrole hydroxamic acids differing in the position of a chloride ion, RDS50 ([1-[(4-chlorophenyl)methyl]-4-phenyl-1 H-pyrrol-3-hydroxamic acid]) and RDS51 (1-[(2-chlorophenyl)methyl]-4-phenyl-1 H-pyrrol-3-hydroxamic acid) were able to inhibit Salmonella growth and its invasion ability of Caco-2 cells. The X-ray structure of SeZnuA containing RDS51 revealed its presence at the metal binding site concomitantly with Zn(II) which is coordinated by protein residues and the hydroxamate moiety of the compound. Conclusions: Two molecules interfering with ZnuA-mediated Zn(II) transport in Salmonella have been identified for the first time. The resolution of the SeZnuA-RDS51 X-ray structure revealed that RDS51 is tightly bound both to the protein and to Zn(II) thereby inhibiting its release. These features pave theway to the rational design of new Zn(II)-binding drugs against Salmonella. General Significance: The data reported show that targeting the bacterial ZnuABC transporter can represent a good strategy to find new antibiotics against Gram-negative bacteria.

Salmonella enterica serovar Typhimurium growth is inhibited by the concomitant binding of Zn(II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter / Ilari, Andrea; Pescatori, Luca; DI SANTO, Roberto; Battistoni, Andrea; Ammendola, Serena; Falconi, Mattia; Berlutti, Francesca; Valenti, Piera; Chiancone, Emilia. - In: BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. - ISSN 0304-4165. - STAMPA. - 1860:3(2016), pp. 534-541. [10.1016/j.bbagen.2015.12.006]

Salmonella enterica serovar Typhimurium growth is inhibited by the concomitant binding of Zn(II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter

ILARI, ANDREA
;
PESCATORI, LUCA;DI SANTO, Roberto;AMMENDOLA, Serena;BERLUTTI, Francesca;VALENTI, PIERA;CHIANCONE, Emilia
2016

Abstract

Background: Under conditions of Zn(II) deficiency, the most relevant high affinity Zn(II) transport system synthesized by many Gram-negative bacteria is the ZnuABC transporter. ZnuABC is absent in eukaryotes and plays an important role in bacterial virulence. Consequently, ZnuA, the periplasmic component of the transporter, appeared as a good target candidate to find newcompounds able to contrast bacterial growth by interferingwith Zn(II) uptake. Methods: Antibacterial activity assays on selected compounds from and in-house library against Salmonella enterica serovar Typhimurium ATCC14028 were performed. The X-ray structure of the complex formed by SeZnuA with an active compound was solved at 2.15 Å resolution. Results: Two di-aryl pyrrole hydroxamic acids differing in the position of a chloride ion, RDS50 ([1-[(4-chlorophenyl)methyl]-4-phenyl-1 H-pyrrol-3-hydroxamic acid]) and RDS51 (1-[(2-chlorophenyl)methyl]-4-phenyl-1 H-pyrrol-3-hydroxamic acid) were able to inhibit Salmonella growth and its invasion ability of Caco-2 cells. The X-ray structure of SeZnuA containing RDS51 revealed its presence at the metal binding site concomitantly with Zn(II) which is coordinated by protein residues and the hydroxamate moiety of the compound. Conclusions: Two molecules interfering with ZnuA-mediated Zn(II) transport in Salmonella have been identified for the first time. The resolution of the SeZnuA-RDS51 X-ray structure revealed that RDS51 is tightly bound both to the protein and to Zn(II) thereby inhibiting its release. These features pave theway to the rational design of new Zn(II)-binding drugs against Salmonella. General Significance: The data reported show that targeting the bacterial ZnuABC transporter can represent a good strategy to find new antibiotics against Gram-negative bacteria.
2016
lead compounds; Salmonella enterica; X-ray structure; ZnuA; ZnuABC zinc transporter; anti-bacterial agents; bacterial proteins; Caco-2 cells; cation transport proteins; humans; hydroxamic acids; pyrroles; Salmonella typhimurium; zinc; biophysics; biochemistry; molecular biology
01 Pubblicazione su rivista::01a Articolo in rivista
Salmonella enterica serovar Typhimurium growth is inhibited by the concomitant binding of Zn(II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter / Ilari, Andrea; Pescatori, Luca; DI SANTO, Roberto; Battistoni, Andrea; Ammendola, Serena; Falconi, Mattia; Berlutti, Francesca; Valenti, Piera; Chiancone, Emilia. - In: BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. - ISSN 0304-4165. - STAMPA. - 1860:3(2016), pp. 534-541. [10.1016/j.bbagen.2015.12.006]
File allegati a questo prodotto
File Dimensione Formato  
Ilari_Salmonella-enterica-serovar_2016.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/935110
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact