The detection of malignant lesions in dermoscopic images by using automatic diagnostic tools can help in reducing mortality from melanoma. In this paper, we describe a fully-automatic algorithm for skin lesion segmentation in dermoscopic images. The proposed approach is highly accurate when dealing with benign lesions, while the detection accuracy significantly decreases when melanoma images are segmented. This particular behavior lead us to consider geometrical and color features extracted from the output of our algorithm for classifying melanoma images, achieving promising results.

Melanoma detection using delaunay triangulation / Pennisi, Andrea; Bloisi, Domenico Daniele; Nardi, Daniele; Giampetruzzi, A. R.; Mondino, C.; Facchiano, A.. - STAMPA. - (2016), pp. 791-798. (Intervento presentato al convegno 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015; Vietri sul Mare, Salerno; Italy; 9 November 2015 through 11 November 2015 tenutosi a Vietri sul mare, Italy) [10.1109/ICTAI.2015.117].

Melanoma detection using delaunay triangulation

PENNISI, ANDREA
;
BLOISI, Domenico Daniele
;
NARDI, Daniele
;
2016

Abstract

The detection of malignant lesions in dermoscopic images by using automatic diagnostic tools can help in reducing mortality from melanoma. In this paper, we describe a fully-automatic algorithm for skin lesion segmentation in dermoscopic images. The proposed approach is highly accurate when dealing with benign lesions, while the detection accuracy significantly decreases when melanoma images are segmented. This particular behavior lead us to consider geometrical and color features extracted from the output of our algorithm for classifying melanoma images, achieving promising results.
2016
27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015; Vietri sul Mare, Salerno; Italy; 9 November 2015 through 11 November 2015
Automatic segmentation; Border detection; Dermoscopy images; Melanoma detection; Software; Artificial Intelligence; Computer Science Applications1707 Computer Vision and Pattern Recognition
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Melanoma detection using delaunay triangulation / Pennisi, Andrea; Bloisi, Domenico Daniele; Nardi, Daniele; Giampetruzzi, A. R.; Mondino, C.; Facchiano, A.. - STAMPA. - (2016), pp. 791-798. (Intervento presentato al convegno 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015; Vietri sul Mare, Salerno; Italy; 9 November 2015 through 11 November 2015 tenutosi a Vietri sul mare, Italy) [10.1109/ICTAI.2015.117].
File allegati a questo prodotto
File Dimensione Formato  
Pennisi_Melanoma_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 284.45 kB
Formato Adobe PDF
284.45 kB Adobe PDF   Contatta l'autore
Pennisi_Postprint-Melanoma_2016.compressed.pdf

Open Access dal 01/08/2017

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 262.66 kB
Formato Adobe PDF
262.66 kB Adobe PDF
ICTAI2015_Frontespizio-indice_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 160 kB
Formato Adobe PDF
160 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/933130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact