We study the dynamics of two bodies moving on elliptic Keplerian orbits around a fixed center of attraction and interacting only by means of elastic or inelastic collisions. We show that there exists a bounded invariant region: for suitable values of the total energy and the total angular momentum (explicitly computable) the orbits of the bodies remain elliptic, whatever are the number and the details of the collisions. The invariant region exists also in the case of two bodies interacting by short range potential.
An invariant region for the collisional dynamics of two bodies on Keplerian orbits / Benedetto, Dario; Lenti, Flavia. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - 4:9(2016), pp. 513-525. [10.1007/s40574-016-0069-x]
An invariant region for the collisional dynamics of two bodies on Keplerian orbits
BENEDETTO, Dario;
2016
Abstract
We study the dynamics of two bodies moving on elliptic Keplerian orbits around a fixed center of attraction and interacting only by means of elastic or inelastic collisions. We show that there exists a bounded invariant region: for suitable values of the total energy and the total angular momentum (explicitly computable) the orbits of the bodies remain elliptic, whatever are the number and the details of the collisions. The invariant region exists also in the case of two bodies interacting by short range potential.File | Dimensione | Formato | |
---|---|---|---|
Benedetto_An-invariant-region_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Contatta l'autore |
Benedetto_postprint_An-invariant-region_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
823.17 kB
Formato
Unknown
|
823.17 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.