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Abstract We study the dynamics of two bodies moving on elliptic Keplerian orbits
around a fixed center of attraction and interacting only by means of elastic or inelastic
collisions. We show that there exists a bounded invariant region: for suitable values of
the total energy and the total angular momentum (explicitly computable) the orbits of
the bodies remain elliptic, whatever are the number and the details of the collisions.

The invariant region exists also in the case of two bodies interacting by short
range potential.
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1 Introduction

The interest in the collisional dynamics in a planetary system goes back to Poincaré.
In particular, in [12] he studies the planetary three-body problem, with one body of
large mass (the Sun) and two bodies of small mass (the planets). He indicates how to
find periodic solutions (of deuxième espèce), as perturbations of periodic collisional
solutions he can get if the mass of the planets are infinitely small and the distance
between them becomes infinitely small. In this approximation, the two bodies are on
Keplerian ellipses until the “choc” (i.e. the interaction), which moves the bodies on
two other Keplerian ellipses. During the interaction, only the total energy and the
total momentum are conserved, and the choc acts as an elastic collision. It should be
noted that the collision can move the bodies also on hyperbolic orbits but Poincaré is
only interested in elliptic case.
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In this work, we prove that, for this collisional dynamics, there exists an invariant
bounded region of positive measure in the phase space. More precisely, we consider
two bodies moving on elliptic Keplerian orbits around a center (the “Sun” in the
sequel), interacting only by means of collisions. A collision changes the orbital pa-
rameters of the bodies, and a sequence of collisions can move one of the bodies out of
the system, on parabolic or hyperbolic orbits. We show that for suitable values of the
total energy and the total angular momentum (easily computable), the bodies remain
on elliptic colliding orbits. Moreover, we extend this result to the case of two point
particles interacting by means a bounded short range potential.

We are neglecting the gravitational interaction between the bodies and the influ-
ence on the Sun. These approximations can be only justified for very light particles
and for a few revolution times (the time between two consecutive collisions can be
very long with respect to the revolution period of the particles). Considering this, our
result has the following interpretation for real systems: the particles can not leave
the system due to the collisions, unless other perturbations change enough the orbital
parameters.

Our result seems not known in the literature, despite its simplicity and despite the
great interest in research on planetary systems. We run in the result while we were
studying numerical models for the dynamics of inelastic particles of planetary rings.
It is known (see [13], [1], and [2]) that the inelasticity of the collisions is sufficient
to guarantee the persistence of the rings. In contrast, in the case of elastic collisions,
almost all the particles leave the system on hyperbolic orbits. Here we prove that in
the case of only two particles, the inelasticity is not needed to avoid that the orbits
become hyperbolic or parabolic; in this sense, two colliding particles are a stable
subsystem of a ring. This observation and its consequences can be interesting for the
study of various models of planetary rings. In particular, in some models it is assumed
that the collisions are elastic for small relative velocities (see [5] for experimental
result on the inelasticity of ice balls).

From the mathematical point of view, it can be interesting to study how the par-
ticles moves on the invariant region. Preliminary two-dimensional numerical simula-
tions, in which the impact parameter is randomly chosen, show that the two orbits are
approximately tangent, for most of the time. The numerical study of this behaviour
in the more realistic three-dimensional case is difficult: it is necessary to find an ef-
ficient way to determine the values of the anomalies which correspond to collisional
configurations. Some useful suggestion and some technical insight can be obtained
analyzing the solutions to the problem of finding the critical points of the distance
from two confocal elliptic orbits in R3 (see [4]).

The paper is organized as follows. In section 2, we establish the mathematical
notation and the exact nature of the problem. In section 3, we analyze a simplified
model considering a two-dimensional dynamics of the orbits instead of the dynamics
of the two bodies. We consider more general cases in section 4 (two bodies in R2) and
in section 5, in which we analyze the case of two bodies in R3; here we also analyze
the case of point particles interacting by means a short range potential.
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2 The problem

The system we analyze consists in two spherical bodies, of mass m1 and m2 and radii
R1 and R2 respectively, which are attracted by a fixed sun and interact by means of
elastic or inelastic collisions. We indicate with xi and vi the position of the center and
the velocity of the body i= 1,2, with M =m1+m2 the total mass and with µi =mi/M
the fraction of the total mass carried by the body i. We choose the units of measure
in such that the gravitational potential energy of the body i is mi/ri, where ri = |xi| is
the distance from the Sun.

In the case of hard spheres, inelastic collisions can be modeled supposing that
only a part of the normal impulse is transferred, while the tangential one is conserved.
Let us denote with n = (x1− x2)/(R1 +R2) the direction of the relative position at
the moment of the impact, and with w = v1− v2 the relative velocity. The particles
are in the incoming configuration iff n ·w < 0. The relative velocity after the collision
is

w′ = (I−n×n) w− (1−2ε)(n×n) w (1)

where I is the identity matrix, (x× y)i j = xiy j is the tensor product, n× n is the
projector on the direction of n, I−n×n is the projector on the orthogonal plane to
n, and finally ε ∈ [0,0.5] is the parameter of inelasticity, which is 0 in the case of the
elastic collision.

The outgoing velocities v′1, v′2 can be obtained from w′ using the conservation of
the velocity of the center of mass

v′ = µ1v′1 +µ2v′2 = µ1v1 +µ2v2 = v

(where µi = mi/(m1 +m2)). If the collision is inelastic, the normal component of w
is reduced in modulus:

w′ ·n =−(1−2ε)w ·n, |w′ ·n| ≤ |w ·n|, (2)

where (1− 2ε) ∈ [0,1) is the coefficient of restitution which is 1 in the elastic case.
The kinetic energy T = m1|v1|2/2+m2|v2|2/2 decreases and becomes

T ′ =
1
2
(
m1|v′1|2 +m2|v′2|2

)
= T −2Mµ1µ2ε(1− ε)(w ·n)2.

We remark that in some model it is assumed that also the tangential component
(I−n×n) w is reduced (see [2] and [7]). Moreover, the restitution coefficient can
depend on the relative velocity, as shown in a huge number of theoretical and ex-
perimental studies (see e.g. [3], [6], and references therein). In all these models the
kinetic energy decreases.

Let us describe what it can be happen to the orbits after a collision of the two
bodies. Before the collision, both energies are negative:

mi

2
v2

i −
mi

|xi|
< 0, i ∈ 1,2.

These conditions are equivalent to

|v+µ2w|2 < 2/|x1|, |v−µ1w|2 < 2/|x2|, (3)
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where |x1−x2|= R1 +R2. It would be easy to find an invariant region, if the bodies
could collide only in x1, x2: if

|w|< min
(
(
√

2/|x1|− |v|)/µ2,(
√

2|/x2|− |v|)/µ1

)
(4)

the inequalities (3) are satisfied, and the orbits remain elliptic after the collision,
because |w′| ≤ |w|, as follows from eq.s (1), (2). The hypothesis (4) is not sufficient
to avoid that one of the particles leaves the system, because the next collision can take
place at other points with very different values of w, v, x1 and x2 More in general,
a sequence of collisions on different points can end with a particle which leaves the
system on a hyperbolic orbit.

Let us remark that, if we consider sticky point particles, i.e. R1 = R2 = 0 and
w′ = 0 (see, for istance, [8]), the only hypotesis required is that the two body orbits
are elliptic before the collision, as follows from (3) with x1 = x2. Note that the sticky
condition is more restrictive than the condition of inelasticity (1) with ε = 1/2; in
the latter case, one of the body can still escape on an hyperbolic orbit after a few
collisions. In this paper, we consider only elastic or inelastic collision, as in (1), with
ε ∈ [0, 1/2].

In the next section we show how to control the condition of ellipticity, regardless
the collision history. Let us first note that, for bodies with vanishing radii, the possible
points of collision are at most two, which is the maximum number of intersection of
two non identical co-focal Keplerian orbits. As noted by Poincaré in [12], if two orbits
have two points of intersections the points and the Sun are on a line or the two orbits
are in a plane. Then, we start our analysis. in section 3, with the two dimensional
case, also simplifying the dynamics considering two point particles.

3 The invariant region for two point-particles in R2

In this section we consider a simplified bi-dimensional mathematical model. We sup-
pose that the bodies are point particles moving on co-focal Keplerian orbits in a plane.
In order to allow the particles collide, we have to assume that the orbits intersect (note
that this can happen at most in two points). Although this condition is satisfied, the
particles can not collide because the cross section is zero for dimensionless bodies. In
order to avoids this problem, we considered the dynamics of the orbits: we choose as
variables the parameters of two orbits o1 and o2, and we evolve the system with the
following procedure: we choose one of the points of intersection, we consider in that
point two fictitious particles on the two orbits, we choose an impact parameter n and
we consider the resulting orbits o′1 and o′2 after the collision of the two particles. We
will show, in Theorem 1, that for sufficiently low value of the total energy, the new
orbits o′1 and o′2 are ellipses and intersect, for any choice between the two possible
collision points and for any choice of the impact parameter n. The key points of the
proof are the conservation of the total momentum, the decrease of the energy, and
the fact that the condition of intersection of the orbits is a feature preserved by the
dynamics.

For the orbit oi of the particle i, ωi is the angle between the x axis and the position
of the periapsis (the point of the orbit of the minimal distances from the Sun); ϑi is the
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true anomaly, i.e. the angle in the orbital plane between the particle and the periapsis
of the orbit; Ei = v2

i /2−1/ri is the specific energy (i.e. the energy for unit of mass);

Li = r2
i ϑ̇i is the specific angular momentum; ei =

√
1+2EiL2

i is the eccentricity. The
position of the particle i in orbits is given by

xi =
L2

i
1+ ei cosϑi

(
cos(ϑi +ωi)

sin(ϑi +ωi)

)
(5)

All the quantities Ei and Li are conserved during the Keplerian motion but only
the combinations m1E1 +m2E2 (the total energy) and m1L1 +m2L2 (the total angular
momentum) are conserved in the elastic collisions, moreover m1E1+m2E2 decreases
if the collisions are inelastic. We fix the initial values of the specific energy and the
specific angular momentum of the whole system (remember that µi =mi/(m1+m2)):

L = µ1L1 +µ2L2
E = µ1E1 +µ2E2

(6)

We can assume L≥ 0 without loss of generality, and we consider E < 0, which is the
case of a couple of elliptic orbits. We rewrite the orbital parameters in terms of the
differences of the energy and angular momentum:

δE = E1−E2
δL = L1−L2

from which
E1 = E +µ2δE
E2 = E−µ1δE and

L1 = L+µ2δL
L2 = L−µ1δL. (7)

From these quantities we can obtain the shapes (i.e. the eccentricities) and the dimen-
sions of the orbits. Theirs positions in the framework are specified by the angles ωi,
but we are only interested in the relative position of the two orbits, which is given by
δω = ω1−ω2.
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Fig. 1 µ1 = 0.45: the region of the admissible values for EL2 =−0.6 and EL2 =−0.4.

Not all the values of δE and δL correspond to couple of orbits: namely the energy
Ei and the angular momentum Li must satisfy the condition 0≤ e2

i = 1+2EiL2
i , i.e.

1
µ2

(
−E− 1

2L2
1

)
≤ δE ≤ 1

µ1

(
E +

1
2L2

2

)
(8)
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These inequalities define, in the space δL,δE, the region of admissibility

A = {(δL,δE)|eq.s (8) hold},

which we show in fig. 1. The boundary of A corresponds to e1 = 0, i.e. δE =− 1
µ2

(
E + 1

2L2
1

)
,

and e2 = 0, i.e. δE = 1
µ1

(
E + 1

2L2
2

)
. As follows from easy calculations, the topology

of the set A depends on the value of EL2. If EL2 <−1/2, as in fig. 1 (a), the region is
not connected (this condition is equivalent to the non existence of the ’mean orbit’, i.e.
the orbit of energy E and angular momentum L, whose eccentricity is

√
1+2EL2). If

−1/2≤ EL2 < 0, as in fig. 1 (b), the region is connected.
If δE ∈ (E/µ1,−E/µ2) the orbits are both elliptic, while if δE > −E/µ2 (i.e.

E1 > 0) the first orbit is hyperbolic and if δE < E/µ1 (i.e. E2 > 0) the second orbit is
hyperbolic. If δL ∈ (−L/µ1,L/µ2) both the particles move counterclockwise, while
if δL = L/µ2 (i.e. L1 = 0) or δL =−L/µ1 (i.e. L2 = 0) one of the orbits degenerates.

With these notations, we can state the first theorem. We fix µ1 ≤ µ2 without loss
of generality, and we consider the case E < 0.

Theorem 1 Let be

σ = σ(µ1,µ2) =−
(1−ξ 2)(µ2

1 +µ2
2 ξ )2

2µ2ξ 2 (9)

where

ξ =

(√
(µ1/µ2)4 +8(µ1/µ2)2− (µ1/µ2)

2
)
/4. (10)

If initially
EL2 < σ (11)

the orbits remain elliptic for all times.
Moreover, |L1| and |L2| are bounded and ei ≤ ci < 1 for suitable constants c1, c2.

Remarks.

i. As we will see in the proof, if the orbits intersect, the value of EL2 is bounded
from below: EL2 ≥−1/2.

ii. According to the spatial scale invariance of the problem, the behavior of the
system depends only on the product EL2 of the two invariant quantities E and
L.

iii. In the proof, we study the condition of intersection in terms of the orbital pa-
rameters; for a similar analysis see [8].

iv. If M is the mass of the Sun, G the Newton constant and k = GM the stan-
dard gravitational parameter of the system, the major semi-axes of the orbit i

is L2
i /(k(1− ei)), where the eccentricity is ei =

√
1+2L2

i Ei/k2. The condition

(11) must be rewritten in term of EL2/k2.
v. The condition (11) is equivalent to e <

√
1−2|σ |, where e =

√
1+2EL2 is the

eccentricty of the ’mean orbit’, i.e. the orbit of energy E and angular momentum
L. In term of the ratio of the semi-axes a = L2/(1− e2) and b = L2/

√
1− e2 of

the mean orbit, the condition becomes b/a <
√

2|σ |.
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vi. The invariant region is large, from two point of view: it contains couples of
orbits which can be very different, and the orbits live in a huge region on the
configuration space. For instance, in the case µ1 = µ2 = 0.5, the critical value is
EL2 =−27/64, and, for this value, if one of the particles has the same orbit of
the Earth, the other particle can intersect the Jupiter orbit, and can arrive at 6.95
U.A. from the Sun. If we consider two orbits with L1 = L2 = L and E1 = E2 = E,
their eccentricity is

√
5/32 ≈ 0.40 and the ratio between the major and the

minor semi-axis is approximately 2.33.
vii. We have fixed the attractive center, therefore we are not considering here a three

body problem, in which we can fix only the center of mass. The planetary three
body system is usually described as a perturbation of the system obtained in
the canonical heliocentric variables neglecting the terms of order m1m2 (see
e.g. [9]). This unperturbed system is a system of two particles moving inde-
pendently on Keplerian orbits, with respect the position of the large body. The
standard gravitational parameters are G(M +mi), and can be different for the
two particles. Our results also hold in this case, with minor modifications.

viii. We have done some preliminary numerical simulations for this model, with n >
2 particles. For n = 3, if initially all the particles can collide with the others,
in the elastic case one of the particle leaves the system after few collisions; in
the inelastic case one of the particle stops to interact with the others after few
collisions, and the orbits of the others two particles converge. A system of a large
amount of colliding particles exhibits a complex behavior: a certain number of
particles (decreasing with the parameter of inelasticity ε) leaves the system,
the others particles asymptotically separate in non interacting clusters of one
particle or two colliding particles. Let us note that for some different inelastic
model (somewhat artificial), it can be proved the existence of “ringlets” i.e. the
existence of a state of n particle which does not cease to interact, and whose
orbits converge (see [7]).

Proof We prove the theorem in the case of elastic collisions, for which E, L and EL2

are conserved quantities, and then the condition (11) is invariant for the dynamics. In
the case of inelastic collisions, the thesis follows from the fact that L is conserved and
E and EL2 can only decrease, then the condition (11) is invariant for the dynamics
also in this case.

The proof follows from the fact that if EL2 is sufficiently close to −0.5, and the
orbits intersect, then the two orbits are elliptic, as we now show.

The two orbits intersect if x1 = x2 for some value of the anomalies ϑ1 and ϑ2.
Using eq. (5), this condition is expressed by the equalities

ϑ2−ϑ1 = ω1−ω2 = δω and L2
1(1+ e2 cosϑ2) = L2

2(1+ e1 cosϑ1).

Inserting in the last equation that ϑ2 = ϑ1 + δω , we obtain an equation in the un-
known ϑ2 that can be solved if and only if

e1e2 cosδω ≤ 1+L2
2E1 +L2

1E2 (12)
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Let us define the set of the values of (δL,δE) for which two orbits of parameters
L1,E1 and L2,E2 intersect if the angle between the periapsides is δω = η :

Iη = {(δL,δE) ∈ A|e1e2 cosη ≤ 1+L2
2E1 +L2

1E2} (13)

By definition
Iη1 ⊂ Iη2 if η1 < η2,

and in particular Iη ⊂ Iπ if η ∈ [0,π]. This implies that, if we rotate two intersect-
ing orbits, in such a way that the two periapsides become in opposition (δω = π),
we obtain two orbits which intersect. The intersection condition is invariant for the
dynamics, then all the values (δL,δE) during the evolution are in the set

Iπ = {(δL,δE) ∈ A|e1e2 ≥−(1+L2
2E1 +L2

1E2)} (14)

Therefore, the set Iπ is invariant for the dynamics.
Now we show that Iπ is contained in the region in which both the orbits are

elliptic, if EL2 is sufficiently small. The set Iπ as defined in (14) is the union of the
set of values of δL and δE in A which solve

e2
1e2

2 = (1+2E1L2
1)(1+2E2L2

2)≥ (1+L2
2E1 +L2

1E2)
2 (15)

provided that
1+L2

2E1 +L2
1E2 ≤ 0, (16)

and the set of values which solve

1+L2
2E1 +L2

1E2 ≥ 0, (17)

Note that this last equation identifies the region Iπ/2, i.e. the region of intersecting
orbits with perpendicular semi-major axis, and it is equivalent to

δE(µ1µ2δL+(µ1−µ2))≤ 1+2EL2− (µ1−µ2)EδL, (18)

Eq. (15) is equivalent to

δE2(µ1L2
1+µ2L2

2)
2−2δE(L2

1−L2
2)(1+E(µ1L2

1+µ2L2
2))+E2(L2

1−L2
2)

2 ≤ 0 (19)

which can be solved if

(L2
1−L2

2)
2(1+2E(µ1L2

1 +µ2L2
2))≥ 0 (20)

If |L1| 6= |L2| this condition is equivalent to 1+ 2E(L2 + µ1µ2δL2) ≥ 0 then the set
Iπ is non void if and only if 1+2EL2 ≥ 0, and it is bounded by the condition

δL2 ≤ 1−2|E|L2

2|E|µ1µ2
(21)

The boundary of the region identified by the inequality (19) is given by the functions

δE =
L2

1−L2
2

(µ1L2
1 +µ2L2

2)
2

(
1+E(µ1L2

1 +µ2L2
2)±

√
1+2E(µ1L2

1 +µ2L2
2)

)
(22)
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which have the sign of L2
1−L2

2.

In figure 2 we show the region Iπ , identified by the inequality (18) (region Iπ/2 ⊂
Iπ ) and the inequality (19) (region Iπ\Iπ/2). In figure 2 (a), the value of EL2 is−0.41,
and the region Iπ intersects the region E1 ≥ 0 (i.e. δE > |E|/µ2). Then, after a col-
lision, one of the outgoing orbits can become hyperbolic. In figure 2 (b), the value
of EL2 is smaller and the invariant region Iπ is completely contained in the region
δE ∈ (−|E|/µ2, |E|/µ1) in which both the orbits are elliptic. Then, whatever are the
details of the collisions, the two orbits remain elliptic, with ei ≤ ci < 1 for some
constants c1,c2, and |L1|, |L2| are bounded via (21) and (6).

Now we will show that the behavior of the system is driven by EL2: there exists
a critical value which separates the two cases. Let us define

d̄(δL,δE) =
L2

1
1+ e1

− L2
2

1− e2
. (23)

This quantity is the distance from the periapsis of the orbits 1 and the apoapsis of the
orbit 2, in the case of ω = π . The value of d̄ is 0 on the boundary of Iπ in the first
quadrant, out of Iπ/2 (see fig. 2). Then the critical value of E e L is such that

E1 = 0, e1 = 1, d̄(δE,δL) = 0,
∂ d̄

∂δL
(δE,δL) = 0

(the gradient of d̄(δE,δL) is vertical in the point of tangency to the line E1 = 0). By
deriving d̄ with respect to δL we obtain

∂δLd̄ = 2µ2
L1

1+ e1
+2µ1

L2

1− e2
−2µ2E1L1

L2
1

e1(1+ e1)2 +2µ1E2L2
L2

2
e2(1− e2)2 (24)

which, using −2EiL2
i = 1− e2

i , becomes

∂δLd̄ = 2µ2
L1

1+ e1
+2µ1

L2

1− e2
µ2L1

1− e2
1

e1(1+ e1)2 −µ1L2
1− e2

2
e2(1− e2)2 =

µ2

e1
L1−

µ1

e2
L2.

(25)
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The condition ∂δLd̄ = 0 and the definition of L in eq. (6) allow us to calculate L1, L2
in terms of e1, e2:

L1 = µ1e1L/(µ2
1 e1 +µ2

2 e2)
L2 = µ2e2L/(µ2

1 e1 +µ2
2 e2)

(26)

Using these expressions in d̄ = 0 with e1 = 1 we obtain the following equation for e2:

2µ
2
2 e2

2 = µ
2
1 (1− e2),

which has only one solution in (0,1), given by eq. (10). Substituting this value in the
expression of L2, we obtain the critical values of EL2 as in (11), imposing 1+E2L2

2 =
e2

2, with E2 = E/µ1 and e1 = 1:

EL2 =−(1− e2
2)(µ

2
1 +µ

2
2 e2)

2/(2µ2e2
2).

Note that we can find a similar condition for which the region Iπ is tangent to the line
E2 = 0, but in the case µ1 ≤ µ2 this second critical value of EL2 is greater than the
previous, then it can be ignored. ut

4 The invariant region for two bodies in R2

In this section, the case of two bodies and the case of point particles which interact
by means of a short range potential are analyzed.

Theorem 2 We consider two circular bodies in R2 of radii R1 and R2 interacting
by means of elastic or inelastic collisions. If EL2 < σ(µ1,µ2), with σ as defined in
eq. (9), and D = R1 +R2 is sufficiently small, then the two bodies remain on elliptic
orbits.

Proof We show that if two orbits have points whose distance is less than or equal to
D, and EL2 < σ and D is sufficiently small, then the orbits are elliptic. We remark
that the condition on the distance is preserved by the dynamics.

Fixed L1,L2,E1,E2, assuming that the two bodies can collide, we need to distin-
guish two situations.

If it exists δω such that the orbits intersect, then (δL,δE) ∈ Iπ .
If the orbits do not intersect for any δω , one of them, named orbit 2, is contained

in the other. In this case, 0 < minδω minϑ1,ϑ2 |x1 − x2| ≤ D, and the minimum is
reached for δω = π; then 0 < d̄(δL,δE)≤ D, where d̄ is defined as in eq. (23).

Since EL2 < σ , the distance between the level set d̄ = 0 (the boundary of Iπ ) and
the critical lines E1 = 0, E2 = 0, is strictly positive. Then, if D is sufficiently small,
the invariant set Iπ ∩{(δL,δE)| d̄ ≤D} does not intersect the region in which E1 ≥ 0
or E2 ≥ 0, and this proves the theorem. ut
Remark. In not-scaled units of measure, the smallness condition on D becomes a
smallness condition on kD/L2 (see remark (iv) after Theorem 1).

In figure 3 we show the level sets of d̄. In figure 3 (a), EL2 = −0.445 and the
invariant set Iπ and the values of d̄ in the complementary region are shown: the black
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Fig. 3 µ1 = 0.45: the values of d̄ in grayscale, in the case EL2 =−0.445 and EL2 =−0.52.

color corresponds to d̄ = 0, the white color corresponds to d̄ ≥ L2/10, while the grays
correspond to the values d̄ ∈ (0,L2/10). The critical value of D is approximately
0.034L2. Figure 3 (b) is relative to the case EL2 =−0.52, in which the set Iπ is void.
Nevertheless, the set d̄ ≤D is invariant and is contained in the region of elliptic orbits
if D is sufficiently small. In the graphics, the black color corresponds to d̄ = 0.2L2,
the white to d̄ ≥ 0.3L2. In this case, the critical value for D is approximately 0.25L2.

We are not able to give a simple expression for the critical values of EL2 and D,
but for the case µ1 = µ2 = 1/2, in which the particles have the same mass.

Theorem 3 If µ1 = µ2 = 1/2, the conditions on EL2 and D are

EL2 <− (1−ξ 2)(1+ξ )2

16ξ 2 where ξ = γ−
√

γ2− γ +1 with γ = 2L2/D > 1

Proof We proceed as in the proof of Theorem 1. Assuming µ1 = µ2 = 1/2 and EL2 <
−27/64, the critical condition ∂δLd̄(δE,δL) = 0 allows us to obtain the value of L1
and L2 as in eq. (26), which becomes

L1 = 2e1L/(e1 + e2)
L2 = 2e2L/(e1 + e2)

(27)

Using these values in d̄ = D with e1 = 1, we obtain the following equation for e2

2L2(1−2e2) = D(1− e2
2),

which is solved in (0,1) by

e2 = γ−
√

γ2− γ +1 where γ = 2L2/D with D < 2L2.

The corresponding value of EL2 is given by EL2 =−(1− e2
2)(1+ e2)

2/(16e2
2). ut

In figure 4 we plot these values in function of D/L2. Let us recall that for EL2 <
−0.5 the two orbits do not intersect.

The last extension we consider in the two dimensional case is that of two point
particles interacting by means of a force of symmetric potential energy V (|x1−x2|),
with a compact support.
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Fig. 4 µ1 = µ2 = 0.5: the critical value of EL2 in function of D/L2.

Theorem 4 Let us consider two point particles interacting by means of a force of
potential energy V = V (|x1− x2|), such that V (r) = 0 if r ≥ D for some D > 0 and
V (r)≥−U with U ≥ 0.

If EL2 < σ(µ1,µ2), with σ as in eq. (9), and and D and U are sufficiently small,
then the particles remains on bounded orbits.

Proof The specific angular momentum L= µ1L1+µ2L2 is conserved at any time also
in this case, because the potential energy is symmetric. If |x1−x2| ≥D the energy of
the interaction is zero and the specific energy of the system is exactly

E = µ1

(
v2

1
2
− 1
|x1|

)
+µ2

(
v2

2
2
− 1
|x2|

)
Therefore, when the two particles leave the region of the interaction, we can apply
Theorem 2, concluding that the particles remain on elliptic orbits until the next inter-
action.

To achieve the proof, we have to discuss the motion of the particles during the
interaction, i.e. when their distance is less than D. If |x1−x2| < D, we can consider
the two ’osculating’ Keplerian orbits, i.e. the Keplerian orbits which correspond to
the two couple position-velocity (x1,v1), and (x2,v2). The specific energies of this
two orbits are

E1 = v2
1/2−1/|x1|, E2 = v2

2/2−1/|x2|.
These quantities are not the specific energies of the two particles (because the contri-
bution of the interaction is not zero), but verify

Ẽ = µ1E1 +µ2E2 = E−V (|x1−x2|)/(m1 +m2)≤ E +U/(m1 +m2)

by the conservation of the total energy. If EL2 < σ and U is sufficiently small, we
have also that ẼL2 < σ , then we can apply Theorem 2, using Ẽ instead of E. There-
fore, if D is sufficiently small, as in the hypothesis of Theorem 2, the two osculating
orbits are elliptic, with bounded value of L1, L2, and ei ≤ ci < 1, as follows from the
compactness of the set Iπ ∪{d̄(δL,δE) ≤ D} ⊂ (−L/µ1,L/µ2)× (E/µ1,−E/µ2).
ut
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5 The invariant region for two bodies in R3

Here we discuss the three dimensional case. We indicate with Li = xi∧vi the vector
which express the specific angular momentum of the particle i in the position xi with
velocity vi, and with L the specific angular momentum of the whole system L =
µ1L1 + µ2L2, which is a conserved vector. In this case, they hold the analogous of
Theorems 1, 2, 4, where the role of L is played by |L|. We summarize these results in
the following theorem.

Theorem 5

1. The invariant region for the orbital dynamics in R3, defined as in section 3, is
given by

E|L|2 < σ

with σ = σ(µ1,µ2) defined as in eq. (9).
2. The invariant region for the collisional dynamics of two hard spheres in R3, of

radii R1 and R2, with D = R1 +R2, is given by E|L|2 < σ with D sufficiently
small.

3. The invariant region for two point particles interacting by means a potential en-
ergy V as in Theorem 4, is given by E|L|2 < σ with D and U sufficiently small.

Proof We prove the theorem starting from the last case, which includes the others as
particular ones. As in the proof of Theorem 4, we define

E1 = 1/2v2
1−1/|x1|, E2 = 1/2v2

2−1/|x2|, Ẽ = µ1E1 +µ2E2

and we note that

Ẽ = E if |x1−x2| ≥ D
Ẽ ≤ E +U/(m1 +m2) if |x1−x2|< D.

We indicate with L̃i = |Li| the modulus of the angular momentum of the orbit of the
particle i, and we define

L̃ = µ1L̃1 +µ2L̃2

which verifies
|L|= |µ1L1 +µ2L2| ≤ L̃ and EL̃2 ≤ E|L|2

(E is negative). Moreover,

ẼL̃2 ≤
(

E +
U

m1 +m2

)
L̃2

then, if E|L|2 < σ as in the hypothesis, for U sufficiently small, it also holds

ẼL̃2 < σ (28)

Let us indicate with oi the Keplerian orbit identified by the position xi and the velocity
vi; its energy is Ei and its angular momentum is Li. If the particles can interact, o1
and o2 have points at distance less than D. We consider the orbits õ1 and õ2 we obtain



14 Dario Benedetto, Flavia Lenti

rigid rotating in R3, around the Sun, o1 and o2, in such that õ1 and õ2 are in the
same plane, and the periapsides of õ1 and õ2 are in opposition. The energy and the
eccentricity of the orbits õi are the same of the orbits oi, while we can identify the
angular momentum of õi with the positive scalar quantity L̃i. This two planar orbits
intersect or have points at distance less that D. In the first case, we can apply Theorem
1 using (28), and we can conclude that the õ1, õ2, and then o1 and o2 are elliptic. In
the second case, we can apply Theorem 2, and we can again conclude that, if D is
sufficiently small, the orbits are elliptic.

The case of spherical bodies can be considered as a particular case, in which
V = +∞, if |x1− x2| ≤ D. Now U = 0 and we have only to require a sufficiently
small value of D. Finally, the case of the orbital dynamics can be considered as the
particular case in which D= 0. The hypothesis E|L|2 < σ is then sufficient to achieve
the thesis. ut
Remarks.

i. The values of D in Theorem 2 can be very large with respect to the scale L2 of the
semi-axis of the orbits, but, if it is so, the system is in the region EL2 <−1/2, in
which the orbits do not intersect. Therefore, the system is made of two particles
which can interact only by means of grazing collisions.

ii. It can be interesting to analyze the case of Theorem 4 when V is unbounded from
below. The particles can leave the system only if their distance remains less than
D, and, in this case, we can expect that the center of mass of the two particles
moves on an approximately elliptic orbit. On the other hand, there are no a priori
bounds on the kinetic energy or on the position of this center of mass.

iii. It can be also interesting to analyze the case of n > 2 particles, with positive
radii. In particular it can be expected that there exist stable ringlets in which the
collisions are grazing.
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12. Poincaré H.: Les méthodes nouvelles de la mécanique céleste (1889), tome III, chapitre XXII, Lib.

Sci. Tech. A. Blanchard, Paris (1987)
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