We introduce a notion of solution to the 1-harmonic flow –i.e., the formal gradient flow of the total variation with respect to the L^2-distance– from a domain of R^m into a connected subset of the image of a smooth Jordan curve. For such notion, we establish existence and uniqueness of solutions to the homogeneous Neumann problem. We also discuss a consistent notion of solution when the target space is a smooth (n − 1)-dimensional manifold whose geodesics are unique, presenting conjectures and open questions related to it.
The 1-harmonic flow with values into a smooth planar curve / Di Castro, Agnese; Giacomelli, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 143:(2016), pp. 174-192. [10.1016/j.na.2016.05.007]
The 1-harmonic flow with values into a smooth planar curve
DI CASTRO, AGNESE;GIACOMELLI, Lorenzo
2016
Abstract
We introduce a notion of solution to the 1-harmonic flow –i.e., the formal gradient flow of the total variation with respect to the L^2-distance– from a domain of R^m into a connected subset of the image of a smooth Jordan curve. For such notion, we establish existence and uniqueness of solutions to the homogeneous Neumann problem. We also discuss a consistent notion of solution when the target space is a smooth (n − 1)-dimensional manifold whose geodesics are unique, presenting conjectures and open questions related to it.File | Dimensione | Formato | |
---|---|---|---|
DiCastro_harmonic_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
649.18 kB
Formato
Adobe PDF
|
649.18 kB | Adobe PDF | Contatta l'autore |
DiCastro_preprint_harmonic_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
344.79 kB
Formato
Adobe PDF
|
344.79 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.