We introduce a notion of solution to the 1-harmonic flow –i.e., the formal gradient flow of the total variation with respect to the L^2-distance– from a domain of R^m into a connected subset of the image of a smooth Jordan curve. For such notion, we establish existence and uniqueness of solutions to the homogeneous Neumann problem. We also discuss a consistent notion of solution when the target space is a smooth (n − 1)-dimensional manifold whose geodesics are unique, presenting conjectures and open questions related to it.

The 1-harmonic flow with values into a smooth planar curve / Di Castro, Agnese; Giacomelli, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 143:(2016), pp. 174-192. [10.1016/j.na.2016.05.007]

The 1-harmonic flow with values into a smooth planar curve

DI CASTRO, AGNESE;GIACOMELLI, Lorenzo
2016

Abstract

We introduce a notion of solution to the 1-harmonic flow –i.e., the formal gradient flow of the total variation with respect to the L^2-distance– from a domain of R^m into a connected subset of the image of a smooth Jordan curve. For such notion, we establish existence and uniqueness of solutions to the homogeneous Neumann problem. We also discuss a consistent notion of solution when the target space is a smooth (n − 1)-dimensional manifold whose geodesics are unique, presenting conjectures and open questions related to it.
2016
1-harmonic flow; Quasilinear parabolic equations; Singular parabolic equations; Total variation flow
01 Pubblicazione su rivista::01a Articolo in rivista
The 1-harmonic flow with values into a smooth planar curve / Di Castro, Agnese; Giacomelli, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 143:(2016), pp. 174-192. [10.1016/j.na.2016.05.007]
File allegati a questo prodotto
File Dimensione Formato  
DiCastro_harmonic_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 649.18 kB
Formato Adobe PDF
649.18 kB Adobe PDF   Contatta l'autore
DiCastro_preprint_harmonic_2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 344.79 kB
Formato Adobe PDF
344.79 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/923027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact