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Abstract

We introduce a notion of solution to the 1-harmonic flow –i. e., the formal gradient flow of
the total variation with respect to the L2-distance– from a domain of Rm into a connected
subset of the image of a smooth Jordan curve. For such notion, we establish existence and
uniqueness of solutions to the homogeneous Neumann problem. We also discuss a consistent
notion of solution when the target space is a smooth (n − 1)-dimensional manifold whose
geodesics are unique, presenting conjectures and open questions related to it.
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1. Introduction

Let Ω ⊂ Rm be an open bounded domain with Lipschitz continuous boundary and let
Σ be an (n − 1)-dimensional smooth and oriented Riemannian manifold embedded in Rn.
Generally speaking, the p-harmonic flow with values into Σ is the formal gradient flow of the
p-energy,

Ep(u) =

∫
Ω
|Du|pdx, u : Ω→ Σ,

with respect to the L2-distance, with the constraint that u takes values into Σ. The p-
harmonic flow was introduced by Eells and Sampson [10] in the case p = 2 for constructing
2-harmonic maps between Riemannian manifolds as long-time limits of solutions to the cor-
responding 2-harmonic flow. We refer to [24, 26] for referenced discussions of the cases p = 2
and 1 < p < ∞, respectively. Harmonic flows are also prototypes for reaction-diffusion sys-
tems arising in various contexts: multi-grain problems [25], theory of liquid crystals [23],
ferromagnetism [9], and image processing [29].

Here we are concerned with the case p = 1, in which BV (Ω) is the natural ambient space
and E1(u) corresponds to the total variation of u. The 1-harmonic flow was proposed as a
tool to denoise either two-dimensional image gradients and optical flows, in which case n = 2
and Σ = S1 [30], or color images by smoothing the chromaticity data while preserving the
contrast, in which case n = 3 and Σ is an octant of S2 [31]. When Σ ⊆ Sn−1, the 1-harmonic
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flow with values into Σ is formally given by

ut − div

(
Du

|Du|

)
= u|Du|, u ∈ Σ (1.1)

(see the Appendix). The most delicate issue in the analysis of (1.1) is to give appropriate
interpretations to the bounded matrix Du/|Du| and to the measure u|Du| that appear in
(1.1). After results in special cases –piece-wise constant data [16, 19, 20], initial data with
“small” energy [18], rotationally symmetric solutions [17, 8, 15]– a general notion of solution
has been introduced in [12, 13, 14], yielding existence results for any n ≥ 2 when Σ = Sn−1

+

(the first hyper-octant of the sphere), as well as uniqueness ones for n = 2. In essence, this
notion rewrites (1.1) in the comprehensive form of

ut = divZ + µ (1.2)

and identifies Z and µ via

(Z,Du) = |u∗||Du| and µ =
u∗

|u∗|
|Du|. (1.3)

Here (Z,Du) denotes a well-defined pairing which, on smooth functions, coincides with the
scalar product of the two matrices, Z : Du (see Section 2).

While the diffuse parts of the measures in (1.3) are very natural, it is not obvious why
the jump parts should have the specific form given in (1.3). In order to answer this question,
it seems useful to start investigating the more general case in which Σ is not contained in a
sphere. In this case, the 1-harmonic flow with values into Σ is formally given by

ut − div

(
Du

|Du|

)
=

1

|Du|
(DN(u) : Du)N(u), u ∈ Σ (1.4)

(see the Appendix), where N : Σ→ Sn−1 denotes one of the two unit normal vector-fields to
Σ (note that the right-hand side of (1.4) is invariant under change of orientation). With the
exception of Section 5, we concentrate on the simplest possible setting, in which n = 2 and
Σ ⊂ R2 is contained in the image of a smooth and regular Jordan curve γ.

Our first goal is to provide an appropriate notion of solution to (1.4). This is done in
Section 3, where we argue that, rewriting (1.4) in the comprehensive form (1.2), the natural
interpretation to µ is:

µ = κ(u)N(u) |D̃u|+ (T (u−)− T (u+)) Hm−1xJu, (1.5)

where T : Σ → S1 is one of the two tangential unit vector-fields to Σ, u+ follows u− along
the orientation of Σ induced by T , and κ(u) = T (u) · ∇N(u)T (u) is the curvature of Σ (here
∇ denotes the gradient in the target space, R2). With this notion, it is easily seen that Z is
characterized by

(Z,DN(u)) = κ(u) |D̃u|+ (N(u))∗ · (T (u−)− T (u+))Hm−1xJu, (1.6)

which is formally equivalent to Z : Du = |Du| when κ 6= 0 in Σ. We also show that such
notion recovers that introduced in [12, 14] when Σ $ S1.
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Our second goal is to prove an existence and uniqueness result based on the above-
mentioned notion of solution. This is done in Section 4, where we consider the homogeneous
Neumann problem for (1.4):

ut = div

(
Du

|Du|

)
+

1

|Du|
(DN(u) : Du)N(u), u ∈ Σ in Q = (0,∞)× Ω

Du

|Du|
· ν = 0 on (0,∞)× ∂Ω

u = u0 on {0} × Ω,

(1.7)

where ν denotes the outward unit normal to ∂Ω. The arguments extend those in [12]: generally
speaking, we argue that u is a solution to (1.7) if and only if u = γ(s), where γ is an arc-length
parametrization of Σ and s solves the homogeneous Neumann problem for the (unconstrained
and scalar) total variation flow:

st = div

(
Ds

|Ds|

)
([3]; see also [5, 11, 27] for recent discussions on some of its generalizations).

Besides their intrinsic interest, we believe that the two goals above are a first step towards
the elaboration of a theory for two distinct generalizations: smooth (n−1)-dimensional man-
ifolds on one hand, and non-smooth planar curves, such as a Wulff shape, on the other.
Concerning the former, in Section 5 we more generally consider an (n− 1)-dimensional man-
ifold Σ on which each pair of points is connected by a unique geodesic (such as Sn−1

+ , as
considered in [14]). Rewriting (1.4) in the comprehensive form (1.2), we argue in favor of

µ = FuN(u) |D̃u|+ (T (u−)− T (u+)) Hm−1xJu (1.8)

as the natural interpretation of µ, where:

• Fu is a bounded, scalar, |Du|-measurable function which coincides with DN(u)
|Du| : Du

|Du| on

smooth functions with |Du| 6= 0;

• T (u−) and T (u+) are the tangential unit vector-fields along the unique geodesic which
goes from u− to u+.

Also, we discuss the analogue of (1.6) and we show that (1.8) coincides both with (1.3)
(when Σ = Sn−1

+ ) and with (1.5) (when n = 2). Finally, we present an open question and
a conjecture, which naturally arise from the discussion above, concerning the lower semi-
continuity of integral functionals involving the second fundamental form.

2. Preliminaries

2.1. General notation

We denote by Hm−1 the (m − 1)-dimensional Hausdorff measure and by Lm the m-
dimensional Lebesgue measure. We denote by D the gradient with respect to x ∈ Ω,

Df :=

(
∂f j

∂xi

)
j=1,...,n, i=1,...,m

, f : Ω ⊂ Rm → Rn,
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while ∇ denotes the gradient with respect to u = (u1, . . . , un) ∈ Rn:

∇h :=

(
∂h

∂u1
, . . . ,

∂h

∂un

)
, h : Rn → R.

Given an m × n matrix Z = (zji ), we write zj = (zj1, ..., z
j
m), j ∈ {1, . . . , n} and zi =

(z1
i , . . . , z

n
i ), i ∈ {1, ...,m}. Given matrices Z = (zji ) and A = (aji ), we let

divZ :=
(
div z1, . . . ,div zn

)
, (2.1)

where

div zj =
m∑
i=1

∂zji
∂xi

, j = 1, . . . , n

and

Z : A =

n∑
j=1

zj · aj =

m∑
i=1

zi · ai =

n∑
j=1

m∑
i=1

zji a
j
i . (2.2)

Given w = (w1, . . . , wn) and η = (η1, ..., ηm), we have

w div η = (w1div η, . . . , wndiv η)

= (div (w1η)− η ·Dw1, . . . ,div (wnη)− η ·Dwn)

(2.1)
= div (w ⊗ η)− ηDw, (2.3)

where w ⊗ η is the matrix defined by

(w ⊗ η)ji = ηiw
j , i = 1, . . . ,m, j = 1, . . . , n.

2.2. BV functions and Green’s formulas

We use standard notations and properties for measures and functions of bounded vari-
ations (see [2]). We sometimes write u ∈ BV (Ω; Σ), meaning that u ∈ BV (Ω;Rn) and
u(x) ∈ Σ ⊂ Rn for a.e. x ∈ Ω.

Let M(Ω;Rn) denote the space of Rn-valued finite Radon measures on Ω (see [2, Def.
1.40]),

Xp(Ω;Rn) := {Z ∈ L∞(Ω;Rmn) : divZ ∈ Lp(Ω;Rn)},
XM(Ω;Rn) := {Z ∈ L∞(Ω;Rmn) : divZ ∈M(Ω;Rn)}.

If Z ∈ XM(Ω;Rn) and w ∈ BV (Ω;Rn) ∩ L∞(Ω;Rn), the functional (Z,Dw) : C∞0 (Ω) → R
defined by

〈(Z,Dw), φ〉 := −
∫

Ω
w∗φ d(divZ)−

∫
Ω
wZ : Dφdx (2.4)

is a Radon measure (note that the first integral on the right hand side of (2.4) is well defined
since |divZ|(A) = 0 whenever Hm−1(A) = 0, see [7, Proposition 3.1]). In addition, (Z,Dw)
is absolutely continuous with respect to |Dw| (see [6, Section 5]): we denote by Θ(Z,Dw) ∈
L1(Ω, |Dw|) its density, that is,∫

E
d(Z,Dw) =

∫
E

Θ(Z,Dw) d|Dw| for any Borel set E ⊆ Ω. (2.5)
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A weak trace on ∂Ω of the normal component of zj ∈ XM(Ω;R), denoted by [zj , ν], is
defined in [4]. Letting

[Z, ν] := ([z1, ν], . . . , [zn, ν]),

the following Green’s formula is established in [6, Theorem 5.3]:∫
Ω
w∗ · d(divZ) +

∫
Ω

d(Z,Dw) =

∫
∂Ω

[Z, ν]w dHm−1. (2.6)

Moreover
div(wZ) = w∗ · divZ + (Z,Dw) as measures (2.7)

(see [6], Lemma 5.4 and the discussion below it) and

[wZ, ν] = w[Z, ν] Hn−1-a.e. on ∂Ω (2.8)

(see [6], Lemma 5.6).

3. The notion of solution: the case n = 2

The first point of interest in this paper is to find the appropriate interpretation to equation
(1.4). In this section we consider the case n = 2, for which an existence and uniqueness result
will be proved in Section 4; generalization to n > 2 will be discussed in Section 5. We thus
make the following assumptions on the target space:

(H) Σ̃ ⊂ R2 is the image of a regular Jordan curve γ ∈ C2([0, S̃]), S̃ > 0, with |γ′(s)| = 1
for all s ∈ [0, S̃]; Σ $ Σ̃ is a connected subset of Σ̃, i. e. Σ = Im(γ|[0,S]), S ∈ (0, S̃).

We introduce notation for the tangential, resp. normal, unit vector-fields T : Σ̃ → S1, resp.
N : Σ̃→ S1,

T (γ(s)) := γ′(s), N(γ(s)) := (γ′(s))⊥ :=
(
(γ2)′,−(γ1)′

)
, (3.1)

and for the curvature κ : Σ̃→ R, defined through

γ′′(s) =: −κ(γ(s))N(γ(s)) (3.2)

(note that γ′′(s) · γ′(s) ≡ 0 since |γ′(s)|2 ≡ 1, hence κ is well defined). Since γ|[0,S] is simple
and not closed, its inverse is well defined and continuous:

σ := (γ|[0,S])
−1 ∈ C(Σ; [0, S]), σ(γ(s)) = s. (3.3)

In order to identify the right hand side of (1.4), we use the following simple observations,
which are proved in the Appendix:

Lemma 3.1. Let Σ as in (H). Then

κ(u) = T (u) · (∇N(u)T (u)) (3.4)

=
(
Tr(∇N(u))−N(u) · (∇N(u))N(u)

)
. (3.5)

and if u : Ω→ Σ is smooth with |Du| 6= 0, then

1

|Du|
(DN(u) : Du)N(u) = κ(u)N(u)|Du|. (3.6)
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Note that, because of n = 2, |Du| factors out in (3.6): hence the right hand side of
(3.6) has a clear meaning for the diffuse part of a BV -function u. In order to identify the
natural candidate to represent the left-hand side of (3.6) on Ju, we alternatively resort on
the definition of κ. Since κ(u)N(u) = −γ′′(σ(u)) (cf. (3.2) and (3.3)), at a jump point it is
natural to replace κ(u)N(u) in (3.6) by minus the difference quotient of the tangential unit
vector-field γ′(σ(u)) = T (u),

T (u−)− T (u+)

|u+ − u−|
|Du|. (3.7)

Here we use the convention that

u+ follows u− along the orientation of Σ induced by γ. (3.8)

Recalling that |Du| = |u+−u−|Hm−1 on Ju, (3.6) and (3.7) motivate the following definition:

Definition 3.2. Let Σ as in (H) and let u ∈ BV (Ω; Σ). We define the Radon measure:

µ := κ(u)N(u) |D̃u|+ (T (u−)− T (u+)) Hm−1xJu, (3.9)

where T , N , and κ are defined in (3.1)-(3.4) and u−, u+ are oriented as in (3.8).

Remark 3.3. The right-hand side of (3.9) is uniquely determined; in particular, it is inde-
pendent of the orientation of Σ. Indeed: the diffuse part, κ(u)N(u), is even with respect to
N (cf. (3.4)); concerning the jump part, under a change of orientation, not only u+ and u−
are switched (cf. (3.8)), but also the tangent vectors T (u+) and T (u−) change sign.

Remark 3.4. If Σ was closed, there would be two paths connecting each pair, giving raise
to two opposite values of T (u−)− T (u+), and in some cases these two paths would have the
same length (think of two antipodal points in the circle), making a discrimination between
the two impossible: hence, for a closed curve (3.9) should be given as an inclusion rather than
as an equality (see. e.g. Definition 2.3 in [12]). Since we wouldn’t be able to prove uniqueness
of solutions to the resulting problem, we prefer to leave this complication aside.

Remark 3.5. Under the additional assumption that N(u1) + N(u2) 6= 0 for all u1, u2 ∈ Σ,
we have

(T (u−)− T (u+)) Hm−1xJu = ± (N(u))∗

|(N(u))∗|
|DjN(u)|, (3.10)

where, however, the sign depends on the orientation of Σ. Indeed, a simple computation
shows that (T (u−)− T (u+)) · (N(u+) +N(u−)) = 0; hence

(T (u−)− T (u+)) = ± N(u+) +N(u−)

|N(u+) +N(u−)|
|T (u−)− T (u+)| = ± (N(u))∗

|(N(u))∗|
|N(u−)−N(u+)|

and (3.10) follows since |DjN(u)| = |N(u−)−N(u+)|Hm−1xJu. In particular, it follows from
(3.10) and (3.8) that

µ = u|D̃u|+ u∗

|u∗|
|Du| when Σ & S1, (3.11)

which coincides with the measure defined in [12, formula (2.1)].

We are now ready to define the concept of solution for problem (1.7).
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Definition 3.6. Let Σ as in (H). A map u : Ω→ Σ is a solution to equation (1.4) in Q if

u ∈ C([0,∞);L2(Ω;R2)) ∩ L1
loc([0,∞);BV (Ω;R2)), ut ∈ L2

loc((0,∞);L2(Ω;R2)) (3.12)

and a matrix-valued function Z ∈ L∞(Q;R2m) exists such that

(i) ‖Z‖∞ ≤ 1, zi ·N(u) = 0 a.e. in Q for all i = 1, . . . ,m,

and the following holds for a.e. t > 0:

(ii) Z(t) ∈ XM(Ω;R2);

(iii) ut(t)− divZ(t) = µ(t);

(iv) ut(t) · T (u(t)) = div (Z(t) · T (u(t))) and ut(t) ·N(u(t)) = 0 in L2(Ω),

with T and N as in (3.1) and µ as in Definition 3.2.

The matrix-valued function Z in Definition 3.6 may be characterized as follows:

Proposition 3.7. Let u and Z as in Definition 3.6. Then

(Z,DN(u)) = κ(u) |D̃u|+ (N(u))∗ · (T (u−)− T (u+))Hm−1xJu. (3.13)

In particular,
(Z,Du) = |u∗||Du| when Σ ( S1. (3.14)

Note that (3.14) coincides with the characterization of Z given in [14, Prop. 3.5].

Proof of Proposition 3.7. Multiplying the equation in (iii) by (N(u))∗ we get

N(u) · ut(t)− (N(u))∗ · (divZ(t)) = (N(u))∗ · µ. (3.15)

The first term on the left-hand side of (3.15) vanishes by the second identity in (iv). The
second one can be rewritten using (2.7) as follows:

−(N(u))∗ · (divZ) = −div (N(u)Z) + (Z,DN(u)) = (Z,DN(u)),

where in the last equality we have used (i) in Definition 3.6. Therefore (3.15) is equivalent to

(Z,DN(u)) = (N(u))∗ · µ.

Using Definition 3.2 we obtain (3.13). If Σ ( S1, taking e.g. the counter-clockwise orientation,
we have N(u) = u, κ(u) = 1 = |u| (cf. (3.4)), and (N(u))∗ · (T (u−)− T (u+)) = |u∗||Du| (cf.
(3.10) and (3.8)), whence (3.13) translates into (Z,Du) = |u∗||Du|.

The next simple observation, proved in the Appendix, implies that the characterization
(3.13) is formally equivalent to Z : Du = |Du| at least when Σ̃ is the smooth boundary of a
strictly convex domain (in particular, when Σ̃ = S1):

Lemma 3.8. Let Σ as in (H) and assume that u : Ω → Σ is smooth. If Z is a smooth
matrix such that zi · N(u) = 0 for all i = 1, . . . ,m and Z : DN(u) = κ(u) |Du|, then
Z(x) : Du(x) = |Du(x)| whenever κ(u(x)) 6= 0.
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Remark 3.9. Besides the jump part of (3.9), Definition 3.6 may be reformulated in terms
of the unit normal vector field N alone (as in [12, 14]). Indeed, the first equality in (iv) may
be replaced with

ut(t) ∧N(u(t)) = div (Z(t) ∧N(u(t))) in L2(Ω)

and, in view of (3.5),

κ(u) = Tr (∇N(u))−N(u) ·
(
∇N(u)N(u)

)
.

In particular, also in view of (3.11), Definition 3.6 coincides with the one given in [12] when
Σ $ S1. On the other hand, in general the jump part of (3.9) may be written in terms of N
only up to the orientation of Σ, cf. (3.10).

4. Existence and uniqueness of solutions

The second point of interest in this paper is to give an existence and uniqueness result
according to the notion of solution illustrated in the previous section. We consider the ho-
mogeneous Neumann problem (1.7). Hence, we complement Definition 3.6 with initial and
boundary conditions:

Definition 4.1. Let Σ as in (H) and let u0 : Ω → Σ be measurable. A map u : Ω → Σ is a
solution to problem (1.7) with initial datum u0 if u is a solution to (1.4) in Q according to
Definition 3.6 and:

(v) [Z(t), ν] = 0 a.e. on ∂Ω;

(vi) u(0) = u0 in Ω.

We prove:

Theorem 4.2. Let Σ as in (H) and let u0 : Ω → Σ measurable. Then there exists a unique
map u : Ω→ Σ which solves problem (1.7) with initial datum u0.

Our strategy for Theorem 4.2 is inspired by that in [12]. Indeed, we will argue that u is
a solution to (1.7) if and only if s = σ(u), with σ as in (3.3), is a solution to the following
scalar and unconstrained problem:

st = div

(
Ds

|Ds|

)
in Q

Ds

|Ds|
· ν = 0 on (0,∞)× ∂Ω

s = s0 on {0} × Ω

(4.1)

Therefore, we begin by providing the necessary details on (4.1).

4.1. The unconstrained scalar problem

We shall be using the following concept of solution to (4.1):

Definition 4.3. [3, Definition 2.5] A solution to (4.1) with initial datum s0 ∈ L2(Ω;R) is a
function

s ∈ C([0,∞);L2(Ω;R)) ∩W 1,2
loc ((0,∞);L2(Ω;R)) ∩ L1

loc([0,∞);BV (Ω;R)) (4.2)
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such that s(0) = s0 and there exists η ∈ L∞(Q;Rm) with ‖η‖∞ ≤ 1 such that

st = div η in L2
loc((0,∞);L2(Ω;R)) (4.3)

and for a.e. t > 0 and all w ∈ BV (Ω;R) ∩ L2(Ω;R) it holds that∫
Ω

(s(t)− w)st(t) dx =

∫
Ω

d(η(t), Dw)−
∫

Ω
d|Ds(t)| (4.4)

[η(t), ν] = 0 a.e. on ∂Ω. (4.5)

Note that η(t) ∈ X2(Ω;R) for a.e. t > 0 in view of (4.3). The pairing and the trace which
appear in (4.4), resp. (4.5), are defined exactly as in Section 2, with w ∈ BV (Ω;R)∩L2(Ω;R)
and XM(Ω;R) replaced by X2(Ω;R). In addition, (η,Dw) is absolutely continuous with
respect to |Dw| (see [3] Corollary C.7) and (2.6) continues to hold (see [3, Sections C.1 and
C.2]).

In the next statement we summarize the results we need on problem (4.1).

Theorem 4.4. Let s0 ∈ L∞(Ω;R). Then there exists a unique solution s to (4.1) in Q with
initial datum s0 and

(η(t), Ds(t)) = |Ds(t)| in M(Ω) for a.e. t > 0. (4.6)

In addition,

(i) if s0 ∈ [0,M ], then s(t) ∈ [0,M ] for a.e. t > 0;

(ii) in Definition 4.3, (4.4) may be replaced by (4.6).

Proof. The existence and uniqueness part is given in [3, Theorem 2.6]. For the proof of (4.6)
and (i) see [14, Theorem 3.3]. Finally, we show that (4.6) implies (4.4):∫

Ω
(s(t)− w)st(t) dx

(4.3)
=

∫
Ω

(s(t)− w)divη
(2.6),(4.5)

= −
∫

Ω
d(η,D(s(t)− w)

(4.6)
=

∫
Ω

d(η(t), Dw)−
∫

Ω
d|Ds(t)|.

4.2. Basic relations between s and u

For s ∈ BV (Ω;R), we assume that the triplet (s+, s−, νs) is such that

s+(x) > s−(x) for all x ∈ Js. (4.7)

We give a few simple relations, between s and u = γ(s), that will be used in both the existence
and the uniqueness part of the proof:

Lemma 4.5. Let s ∈ BV (Ω; [0, S]). Then u = γ ◦ s ∈ BV (Ω; Σ) with

|Du| ≤ |Ds|, |D̃u| = |D̃s|, and Ju = Js (4.8)

and
µ = −γ′′(s)|D̃s|+

(
γ′(s−)− γ′(s+)

)
Hm−1xJs. (4.9)

where µ is defined by (3.9).
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Proof. Since γ is a Lipschitz C1 function, the chain rule for BV -functions (see [2, Theorem
3.96]) implies that u ∈ BV (Ω;R2) (with, obviously, u ∈ Σ) and

|Du| = |γ′(s)||D̃s|+ |γ(s+)− γ(s−)|Hm−1xJs,

hence (4.8) follows since |γ′| ≡ 1 and |γ(s+) − γ(s−)| ≤ |s+ − s−|. Finally, recalling the
orientation conventions (3.8) and (4.7), (4.9) follows from

µ
(3.9)
= κ(u)N(u)|D̃u|+ (T (u−)− T (u+))Hm−1xJu

(4.8)
= κ(γ(s))N(γ(s))|D̃s|+ (T (γ(s−))− T (γ(s+)))Hm−1xJs

(3.1),(3.2)
= −γ′′(s)|D̃s|+

(
γ′(s−)− γ′(s+)

)
Hm−1xJs.

4.3. Proof of Theorem 4.2, existence

In the course of the proof of the existence part of Theorem 4.2, we will need to identify
pairings of the form (η,D(γj)′(s)). We actually prove a slightly more general result which, for
a Lipschitz function f , identifies the pairing (η,Df(w)) in terms of its density with respect
to w:

Lemma 4.6. Let w ∈ BV (Ω;R) ∩L2(Ω;R), η ∈ X2(Ω;R), and f ∈ C1(R) with ‖f ′‖∞ <∞.
Then, under (4.7),

(η,Df(w)) = Θ(η,Dw)
(
f ′(w)|D̃w|+ (f(w+)− f(w−))Hm−1xJw

)
. (4.10)

In addition, if (η,Dw) = |Dw| as measures, then Θ(η,Dw) = 1 |Dw|-a.e. in Ω.

Proof. Let L > ‖f ′‖∞, so that the function w → Lw + f(w) is increasing. Then, it follows
from [4, Proposition 2.8] (see also the remark preceding Proposition 2.1 there) that

Θ(η,D(Lw + f(w))) = Θ(η,Dw) = Θ(η, LDw) |Dw|-a.e.. (4.11)

Therefore∫
E

d(η,Df(w)) =

∫
E

(d(η,D(Lw + f(w)))− d(η, LDw))

(2.5)
=

∫
E

Θ(η,D(Lw + f(w)))d|D(Lw + f(s))| − L
∫
E

Θ(η, LDw)d|Dw|

(4.11)
=

∫
E

Θ(η,Dw)d(|D(Lw + f(w))| − L|Dw|)

for any Borel set E ⊆ Ω, i.e.,

(η,Df(w)) = Θ(η,Dw)(|D(Lw + f(w))| − L|Dw|) in M(Ω). (4.12)

On the other hand, by the chain rule [2, Theorem 3.96] and since w → Lw+f(w) is increasing,

|D(Lw + f(w))| − L|Dw|
= f ′(w)|D̃w|+ (|Lw+ + f(w+)− Lw− − f(w−)| − L|w+ − w−|)Hm−1xJw
= f ′(w)|D̃w|+ (f(w+)− f(w−))Hm−1xJw. (4.13)
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Combining (4.12) and (4.13) we obtain (4.10). If in addition (η,Dw) = |Dw|, then∫
E

Θ(η,Dw)d|Dw| =
∫
E

d(η,Dw) =

∫
E

d|Dw| = |Dw|(E),

hence Θ(η,Dw) ≡ 1 |Dw|-a.e. in Ω.

We are now ready to prove the existence part of Theorem 4.2.

Proof of Theorem 4.2: existence. We define s0 : Ω → [0, S] as s0(x) = σ(u0(x)), where σ =
(γ|[0,S]

)−1. Since u0 is measurable and σ is continuous (cf. (3.3)), s0 is also measurable;

therefore s0 ∈ L∞(Ω). Hence, by Theorem 4.4, there exists a unique solution s to problem
4.1 in Q with initial datum s0, and s(t) ∈ [0, S] for a.e. t > 0.

Let u(t) := γ(s(t)). Since s ∈ C([0,∞), L2(Ω;R)) and γ is Lipschitz continuous, u ∈
C([0,∞), L2(Ω;R2)) and u(0) = γ(s(0)) = γ(s0) = u0 for a.e. x ∈ Ω, hence (vi) in Definition
4.1 holds. Moreover, ut = γ′(s)st ∈ L2

loc((0,∞);L2(Ω;R2)). Since s(t) ∈ L1([0,∞);BV (Ω;R)),
by Lemma 4.5 we have u ∈ L1

loc([0,∞);BV (Ω;R2)). Hence the regularity properties (3.12) in
Definition 3.6 are satisfied.

Let
Z := γ′(s)⊗ η (4.14)

with η as in Definition 4.3. Since η ∈ L∞(Q;Rm) with ‖η‖∞ ≤ 1, we have Z ∈ L∞(Q;R2m)
with ‖Z‖∞ ≤ 1. We now argue for a.e. t and omit dependence on t for notational convenience.
Since η ∈ X2(Ω;R), it follows immediately from (2.7) (applied with n = 1, Z = η and
w = (γj)′(s)) that

div zj = ((γj)′(s))∗ div η + (η,D(γj)′(s)) in D′(Ω), j = 1, 2,

hence Z(t) ∈ XM(Ω;R2) and (ii) in Definition 3.6 holds. Condition (i) in Definition 3.6 is
immediate, recalling (4.14) and (3.1). In addition, since T (u) = T (γ(s)) = γ′(s) and |γ′| = 1,

Z T (u)
(4.14)

= (γ′(s)⊗ η) γ′(s) = (γ′(s) · γ′(s)) η = η. (4.15)

Therefore

ut · T (u) = st γ
′(s) · T (γ(s)) = st

(4.1)
= div η

(4.15)
= div(Z T (u)) in L2(Ω),

ut ·N(u) = st γ
′(s) ·N(γ(s)) = 0 in L2(Ω),

hence (iv) in Definition 3.6 holds true. The boundary condition (v) in Definition 4.1 follows
directly from (4.5) and (2.8). It remains to show (iii) in Definition 3.6. We have

ut = γ′(s)st
(4.1)
= (γ′(s))∗ div η

(2.3)
= div (γ′(s)⊗ η)− ηD(γ′(s))

(4.14)
= divZ + µ̃ in D′(Ω),

where we have set
µ̃ := (−(η,D(γ1)′(s)),−(η,D(γ2)′(s))). (4.16)

Since (η,Ds) = |Ds| (cf. Theorem 4.4), Lemma 4.6 (applied with f = (γj)′) yields

(η,D(γj)′(s)) = (γj)′′(s)|D̃s|+
(
(γj)′(s+)− (γj)′(s−)

)
Hm−1xJs (4.17)

for j = 1, 2. Therefore

µ̃
(4.16),(4.17)

= −γ′′(s)|D̃s|+
(
γ′(s−)− γ′(s+)

)
Hm−1xJs

(4.9)
= µ

and the proof is complete.
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4.4. Proof of Theorem 4.2, uniqueness

In order to prove uniqueness, we will argue that if u is a solution of (1.7), then s = σ(u)
is a solution to (4.1), and exploit the uniqueness of the latter. For this, we need to guarantee
that s(t, ·) ∈ BV :

Lemma 4.7. Let Σ and γ as in (H). Then σ := (γ|[0,S])
−1 : Σ→ [0, S] is Lipschitz continuous.

Furthermore, if u ∈ BV (Ω; Σ) then s = σ◦u is well defined, s ∈ BV (Ω;R), and |Ds| ≤ C|Du|,
where C is the Lipschitz constant of σ.

Proof. We recall that σ is well defined in view of (3.3). We claim that σ is Lipschitz continuous
in [0, S], i.e., C ≥ 1 exists such that

|σ(u1)− σ(u2)| ≤ C|u1 − u2| for all u1, u2 ∈ Σ, (4.18)

which is equivalent to

|s1 − s2| ≤ C|γ(s1)− γ(s2)| for all s1, s2 ∈ [0, S]. (4.19)

We assume by contradiction that for any k ∈ N there exist s1,k and s2,k such that

k|γ(s1,k)− γ(s2,k)| < |s1,k − s2,k|.

Since s1,k, s2,k ∈ [0, S], up to a subsequence (not relabeled) we may assume that s1,k → s1,
s2,k → s2. Hence we have

|γ(s1,k)− γ(s2,k)|
|s1,k − s2,k|

<
1

ck
, ck →∞ as k →∞. (4.20)

We pass to the limit as k →∞ in (4.20): if s1 6= s2, we obtain γ(s1) = γ(s2), in contradiction
with the fact that γ is simple and S < S̃; if instead s1 = s2, we arrive at |γ′(s1)| = 0, in
contradiction with |γ′(s)| = 1 for all s ∈ [0, S̃]. Hence (4.19), i.e. (4.18), holds.

Let now u ∈ BV (Ω; Σ). Since u ∈ Σ, s = σ ◦ u is well defined. As is well-known (see e.g.
[22, Theorem 2.3]), there exists σ̂ : R2 → R such that σ̂ is Lipschitz (with the same constant
C of σ) and σ̂|Σ = σ. Using that

|Dσ̂(u(x))| ≤ C|Du(x)| for all u ∈ C∞(Ω;R2)

and arguing exactly as in the first lines of the proof of Theorem 3.96 in [2], we obtain that
σ̂ ◦u ∈ BV (Ω;R). Since u ∈ Σ and σ̂|Σ = σ, we have s = σ̂ ◦u and the proof is complete.

We are now ready to prove the uniqueness part of Theorem 4.2.

Proof of Theorem 4.2: uniqueness. Let u be a solution to problem (1.7) in the sense of Defi-
nition 4.1. We let s0 = σ(u0) with σ as in Lemma 4.7. Since σ is Lipschitz, s0 is measurable
and belongs to L∞(Ω;R). In view of Lemma 4.7, for a.e. t > 0 the function s(t) := σ(u(t))
belongs to BV (Ω;R) and, of course, u(t, x) = γ(s(t, x)). We will argue that s is a solution
to problem 4.1 with initial datum s0; since such solution s is unique in view of Theorem 4.4
and u = γ(s), this implies the desired uniqueness result.

Since |Ds| ≤ C|Du| (cf. Lemma 4.7), we have s ∈ L1
loc([0,∞);BV (Ω;R)). The other

properties in (4.2) follow directly from those of u; in particular, s(0) = s0. We have

st = (γ′(s)st · γ′(s)) = ut · T (u) = div (Z T (u)) in D′(Ω;R), (4.21)
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where we have used (iv) in Definition 3.6. Therefore, letting

η := Z T (u) ∈ L∞(Ω;R), (4.22)

(4.21) implies that η ∈ X2(Ω;R) and that (4.3) holds. In addition, ‖η‖∞ ≤ ‖Z‖∞ ≤ 1 and
(4.5) holds in view of (v) in Definition 4.1. It remains to check (4.4). In view of (ii) in
Theorem 4.4, it suffices to show that

(Z T (u), Ds)
(4.22)

= (η(t), Ds(t)) = |Ds(t)| in M(Ω) for a.e. t > 0. (4.23)

We argue for a.e. t > 0 and we omit the dependence on t for notational convenience.
Since u = γ(s), we have

(γj(s))′st = ujt = div zj + µj , j = 1, 2, (4.24)

where µ = (µ1, µ2) is defined in (3.9). Since zi = (zi · T (u))T (u) for i = 1, ...,m (see (i) in
Definition 3.6), we have

Z = (Z T (u))⊗ T (u)
(4.22)

= η ⊗ γ′(s),

so that (4.24) may be rewritten as

(γj(s))′st = div
(
η(γj)′(s)

)
+ µj , j = 1, 2. (4.25)

On the other hand,

(γj(s))′st
(4.21)

=
(
(γj)′(s)

)∗
div (Z T (u))

(4.22)
=

(
(γj)′(s)

)∗
div η

(2.7)
= div

(
(γj)′(s) η

)
− (η,D(γj)′(s)), j = 1, 2. (4.26)

Combining (4.25) and (4.26) we obtain

−(η,D(γj)′(s)) = µj , j = 1, 2. (4.27)

Now, using Lemma 4.6 with f = (γj)′ and w = s, we deduce that

µj
(4.27)

= −(η,D(γj)′(s))

= Θ(η,Ds)
(
−(γj)′′(s)|D̃s| −

(
(γj)′(s+)− (γj)′(s−)

)
Hm−1xJs

)
(4.28)

for j = 1, 2. On the other hand,

µ
(4.9)
= −γ′′(s)|D̃s| −

(
γ′(s+)− γ′(s−)

)
Hm−1xJs. (4.29)

From (4.29) and (4.28) we obtain

Θ(η,Ds) = 1 |Ds|-a.e., (4.30)

i.e., ∫
E

d|Ds| (4.30)
=

∫
E

Θ(η,Ds) d|Ds| =
∫
E

d(η,Ds)

for any Borel set E ⊂ Ω. Hence (4.23) holds and the proof is complete.
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5. The notion of solution: the case n ≥ 2

In this section, we return to the first point of interest in this paper: to find an appropri-
ate interpretation to equation (1.4). We look, however, to the general n-dimensional case,
assuming that:

(Hn) Σ is an (n − 1)-dimensional smooth and oriented Riemannian manifold embedded in
Rn; furthermore, for any pair u−, u+ ∈ Σ there exists a unique (up to the orientation)
arc-length parametrized geodesic α in Σ connecting u− and u+; we let

T (α(s)) := α′(s) (5.1)

and we use the convention that

u+ follows u− along the orientation of α. (5.2)

Using the comprehensive form
ut − divZ = µ,

we aim to introduce an interpretation to the right-hand side µ which is consistent with the
analysis performed both here and in [12, 13, 14] and which, of course, recovers

µ =
1

|Du|
(DN(u) : Du)N(u) =

(
∇N(u)Du :

Du

|Du|

)
N(u) (5.3)

on smooth functions with nonzero gradient. First of all, since N is smooth, in view of (5.3)
it is natural to assume that µ is absolutely continuous with respect to |Du|, so that we may
represent it as

µ = µ̃|D̃u|+ µj |Dju| (5.4)

for suitable |D̃u|-, resp. |Dju|-, integrable functions µ̃, resp. µj . Let us first consider the
density of the diffuse part, µ̃. On one hand, since u is approximately continuous on the

support of |D̃u|, we expect that the constraint u ∈ Σ is unessential to the representation of µ̃.
On the other hand, since the measures Du and DN(u) are both absolutely continuous with
respect to |Du|, and ∇N(u) is bounded, we have

Fu :=
DN(u)

|Du|
:
Du

|Du|
∈ L1(Ω; |Du|) (5.5)

(here ν/µ denotes the density of ν with respect to µ). In addition, Fu coincides with
1
|Du|2 (DN(u) : Du) on smooth functions with nonzero gradient. Therefore, recalling (5.3)

and (5.4), we expect that
µ̃ = FuN(u). (5.6)

In order to identify the natural candidate to represent µj , we alternatively resort on two
observations. On one hand, for manifold-valued mappings u, geodesics connecting u+ and
u− are the natural paths on which the jump part is evaluated: for instance, the relaxation of∫

Ω |Du|dx coincides, on Ju, with the geodesic distance between u+ and u− (see e.g. [1, 21, 28]).
On the other hand, along a geodesic α we have (using that α′′ is parallel to N)

(∇N(α)α′ · α′)N(α) =
(
(N(α))′ · α′

)
N(α) = −(N(α) · α′′)N(α) = −α′′.
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Therefore, on Ju it is natural to replace
(
DN(u)
|Du| : Du

|Du|

)
N(u) by minus the difference quotient

of the tangential unit vector-field; i.e., recalling (5.1), to let

µj =
T (u−)− T (u+)

|u+ − u−|
. (5.7)

Plugging (5.6) and (5.7) into (5.4) and recalling that |Dju| = |u+ − u−|Hm−1xJu, we obtain
what we expect to be the appropriate definition for the right-hand side of (1.4):

µ := FuN(u)|D̃u|+ (T (u−)− T (u+)) Hm−1xJu, (5.8)

where T is defined in (5.1) and Fu is defined in (5.5). Arguing as in Remark 3.3, it is easily
seen that the right-hand side of (5.8) is uniquely determined.

The measure µ in (5.8) coincides both with the measure µ defined in (3.9) (when n = 2)

and with the characterization given in [14] (when Σ = Sn−1
+ ):

Proposition 5.1. Let u ∈ BV (Ω; Σ) and let µ be defined by (5.8).

(i) If n = 2 and Σ is as in (H), then µ = µ, where µ is defined in (3.9);

(ii) if Σ = Sn−1
+ , then µ = u|D̃u|+ u∗

|u∗| |D
ju|.

Proof. Concerning (i), the jump parts of µ and µ are identical; hence we only need to prove
that

Fu = κ(u) |D̃u|-a.e. in Ω. (5.9)

We obviously have

Du

|Du|

(
|D̃u|+ |Dju|

)
= Du = D̃u+Dju =

D̃u

|D̃u|
|D̃u|+ Dju

|Dju|
|Dju|.

In particular,
Du

|Du|
=

D̃u

|D̃u|
|D̃u|-a.e.. (5.10a)

By the same argument,
DN(u)

|Du|
=
D̃N(u)

|D̃u|
|D̃u|-a.e.. (5.10b)

In addition, since N is smooth, by the chain rule

D̃N(u) = ∇N(u)D̃u |D̃u|-a.e.. (5.10c)

Therefore

Fu
(5.5)
=

DN(u)

|Du|
:
Du

|Du|
(5.10)

=
∇N(u)D̃u

|D̃u|
:
D̃u

|D̃u|
|D̃u|-a.e.. (5.11)

By Lemma 4.7, s = σ(u) ∈ BV (Ω; [0, S0]). Hence u = γ(s) and, by the chain rule,

D̃u = γ′(s)⊗ D̃s and |D̃u| = |D̃s|. (5.12)
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Therefore, using that D̃s
|D̃s| : D̃s

|D̃s| = 1 |D̃s|-a.e. (see e.g. [2, Theorem 1.29]),

Fu
(5.11),(5.12)

=
∇N(γ(s))γ′(s)⊗ D̃s

|D̃s|
:
γ′(s)⊗ D̃s
|D̃s|

=
(
∇N(γ(s))γ′(s) · γ′(s)

) D̃s

|D̃s|
· D̃s
|D̃s|

= ∇N(u)T (u) · T (u)
(3.4)
= κ(u) |D̃u|-a.e.,

which proves (5.9).

Concerning (ii), fix e.g. N(u) = −u. Again since Du
|Du| : Du

|Du| = 1 |Du|-a.e., the identifica-
tion of the diffuse part is immediate. In order to identify the jump part, using the rotational
invariance of the equation we may assume without losing generality that

u− = (sin θ−, cos θ−, 0, . . . , 0), u+ = (sin θ+, cos θ+, 0, . . . , 0), (5.13)

so that the geodesic connecting u− to u+ belongs to Π := {(u1, u2, 0, . . . , 0) : u1, u2 ∈ R2}.
Letting

u⊥ := (u2,−u1, 0, . . . , 0) for all u = (u1, u2, 0, . . . , 0) ∈ Π

and fixing e.g. the clockwise orientation of α (which by (5.13) and (5.2) means that θ− < θ+),
we have T (u) = u⊥ and the argument becomes identical to the one in Remark 3.5.

Remark 5.2. With µ as in (5.8), one can write down a complete definition of solution in the
spirit of [14]. In particular, u and Z shall be such that

u ∈ C([0,∞);L2(Ω;Rn)) ∩ L1
loc([0,∞);BV (Ω;Rn)), ut ∈ L2

loc((0,∞);L2(Ω;Rn)),

Z ∈ L∞(Q;Rmn), ‖Z‖∞ ≤ 1,

zi ·N(u) = ut ·N(u) = 0 a.e. in Q for all i = 1, . . . ,m,

ut(t)− divZ(t) = µ(t) as measures for a.e. t.

In this case, arguing exactly as in the proof of Proposition 3.7, one finds that Z is such that

(Z,DN(u)) = Fu |D̃u|+ (N(u))∗ · (T (u−)− T (u+))Hm−1xJu. (5.14)

In particular (Z,Du) = |u∗| |Du| when Σ = Sn−1
+ , which coincides with the characterization

given in [14, Proposition 3.5].

Remark 5.3. If both u and Z are smooth, (5.14) coincides with

|Du|(Z : DN(u)) = DN(u) : Du in Ω. (5.15)

In general, it is not obvious that (5.15) yields the expected characterization of Z, Z : Du =
|Du|. However, this is the case if Σ has positive principal curvatures (up to a change of
orientation) and if Z = fDu for some scalar function f . Indeed, the assertion is trivial if
|Du| = 0. Otherwise, we have

(f |Du| − 1)Du : (∇N(u)Du) = |Du|(Z : DN(u))−DN(u) : Du
(5.15)

= 0,

which implies that f = 1
|Du| since |Du| > 0 and ∇N is positive definite.
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It is clear that our analysis leaves the question of existence in the (n−1)-dimensional case
open. In turn, we believe that an answer to this question will require lower semi-continuity
results for functionals involving the second fundamental form. For instance, based on the
arguments developed in [14], we expect that the necessity of lower bounds on

I(u) = inf

{
lim inf
n→∞

∫
Ω

1

|Dun|
(DN(un) : Dun)(N(u))∗ ·N(un) : un ∈ Σ, un → u in L1(Ω)

}
will naturally emerge from an approximation scheme in order to identify the limits µ and Z
(cf. e.g. (5.14)). In this respect, we conjecture that

I(u) ≥ Fu|D̃u|+ (N(u))∗(T (u−)− T (u+))Hn−1xJu (5.16)

when Σ is as in (Hn) and, in addition, Σ has positive principal curvatures (up to a change of
orientation) and is such that such that N∗ ·N is positive. When Σ = SN−1

+ , (5.16) has been
shown to be true in [14]. However, in general, it seems that (5.16) does not follow from known
lower semi-continuity (in fact, relaxation) theories unless an additional isotropy condition is
satisfied (see [28]), hence it is itself an open question.

Appendix A.

Appendix A.1. The formal derivation of (1.1) and (1.4)

Consider the total variation functional with the constraint that u takes value into Σ:

E(u) =

∫
Ω

d|Du|, u : Ω→ Σ.

Consider a smooth map u such that |Du(t, x)| 6= 0 for all (t, x) ∈ Q. The formal gradient
flow of E with respect to the L2-distance is given by

(ut, v)L2 = −〈∂E(u), v〉 for all v ∈ TuΣ (A.1)

u ∈ Σ. (A.2)

Note that, because of (A.2), the class of admissible variations in (A.1) is limited to v ∈ TuΣ,
where TuΣ is the tangent plane to Σ at u. Since

〈∂E(u), v〉 =

∫
Ω

Du

|Du|
: Dv dx = −

∫
Ω

div

(
Du

|Du|

)
· v dx for all v ∈ TuΣ,

(A.1) yields

ut − div

(
Du

|Du|

)
= λ(u)N(u). (A.3)

Because of (A.2), we have

N(u) · ut = 0 and N(u) ·Diu = 0 for all i = 1, . . . ,m. (A.4)

Multiplying (A.3) by N(u), we obtain

λ(u)
(A.3)
= N(u) · ut −N(u) · div

(
Du

|Du|

)
(A.4),(2.7)

= −div

(
N(u)Du

|Du|

)
+

(
DN(u) :

Du

|Du|

)
(A.4)
=

1

|Du|
(DN(u) : Du) ,

whence (1.4). If Σ ⊆ Sn−1, then (say) N(u) = −u, hence λ(u) = −|Du| and (1.1) follows.
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Appendix A.2. Proof of Lemmas 3.1 and 3.8

Proof of Lemma 3.1. We preliminarily note that if v is such that |v| = 1 and Z is a 2 × 2
matrix, simple computations show that

v · Zv + v⊥ · Zv⊥ = TrZ, where v⊥ = (v2,−v1). (A.5)

We recall that κ is defined through

γ′′(s) = −κ(γ(s))N(γ(s)). (A.6)

Since N(γ(s)) · γ′(s) ≡ 0, we have

0 =
d

ds

(
N(γ(s)) · γ′(s)

)
=

(
d

ds
N(γ(s))

)
· γ′(s) +N(γ(s)) · γ′′(s). (A.7)

Therefore

κ(u) = κ(γ(s))N(γ(s)) ·N(γ(s))
(A.6)
= −γ′′(s) ·N(γ(s))

(A.7)
= γ′(s) ·

(
d

ds
N(γ(s))

)
= γ′(s) ·

(
∇N(γ(s)) γ′(s)

)
= T (u) ·

(
∇N(u)T (u)

)
, (A.8)

which coincides with (3.4), and using (A.5) we obtain (3.5). On the other hand, in view of
(A.4) we have

Diu = |Diu|T (u) for all i = 1, . . . ,m. (A.9)

Then

DN(u) : Du
(2.2)
=

m∑
i=1

Diu ·DiN(u) =

m∑
i=1

Diu · ∇N(u)Diu

(A.9)
=

m∑
i=1

|Diu|2T (u) · ∇N(u)T (u)

= |Du|2(T (u) · (∇N(u)T (u))). (A.10)

Combining (A.8) and (A.10) we obtain (3.6).

Proof of Lemma 3.8. We recall that, by assumption and using (A.4),

zi = |zi|T (u) and zi ·Diu = |zi||Diu| for all i = 1, . . . ,m. (A.11)

Then

Z : DN(u)
(2.2)
=

m∑
i=1

zi · ∇N(u)Diu

(A.9),(A.11)
=

(
m∑
i=1

|zi||Diu|

)(
T (u) · ∇N(u)T (u)

)
(A.8),(A.11)

= κ(u)(Z : Du).

Since by assumption Z : DN(u) = κ(u)|D(u)|, provided that κ(u) 6= 0 we conclude that
(Z : Du) = |Du|.
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[21] M. Giaquinta, D. Mucci, Relaxation results for a class of functionals with linear
growth defined on manifold constrained mappings. J. Convex Anal. 15 (2008), 719–751.

[22] e J. Heinonen, Lectures on Lipschitz analysis. Report. University of Jyväskylä, Depart-
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Birkhäuser, Basel, 2004.

[25] R. Kobayashi, J. A. Warren, W. C. Carter, A continuum model of grain bound-
aries. Phys. D 140 (2000), 141–150.

[26] F. Lin, C. Wang, The analysis of harmonic maps and their heat flows. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. xii+267 pp..

[27] P.B. Mucha, M. Muszkieta, P. Rybka, Two cases of squares evolving by anisotropic
diffusion. Adv. Differential Equations 20 (2015), 773–800.

[28] D. Mucci, Relaxation of isotropic functionals with linear growth defined on manifold
constrained Sobolev mappings. ESAIM Control Optim. Calc. Var. 15 (2009), 295–321.

[29] G. Sapiro, Geometric partial differential equations and image analysis. Cambridge Uni-
versity Press, 2001.

[30] B. Tang, G. Sapiro, V. Caselles, Diffusion of general data on non-flat manifolds
via harmonic maps theory: The direction diffusion case. Int. J. Comput. Vis. 36 (2000),
149–161.

[31] B. Tang, G. Sapiro, V. Caselles, Color image enhancement via chromaticity diffu-
sion. IEEE Trans. Image Process. 10 (2001), 701–707.

20


