My studies and my Ph.D. thesis deal with topics that recently emerged in the field of decisions under risk and uncertainty. In particular, I deal with the "target-based approach" to utility theory. A rich literature has been devoted in the last decade to this approach to economic decisions: originally, interest had been focused on the "single-attribute" case and, more recently, extensions to "multi-attribute" case have been studied. This literature is still growing, with a main focus on applied aspects. I will, on the contrary, focus attention on some aspects of theoretical type, related with the multi-attribute case. Various mathematical concepts, such as non-additive measures, aggregation functions, multivariate probability distributions, and notions of stochastic dependence emerge in the formulation and the analysis of target-based models. Notions in the field of non-additive measures and aggregation functions are quite common in the modern economic literature. They have been used to go beyond the classical principle of maximization of expected utility in decision theory. These notions, furthermore, are used in game theory and multi-criteria decision aid. Along my work, on the contrary, I show how non-additive measures and aggregation functions emerge in a natural way in the frame of the target-based approach to classical utility theory, when considering the multi-attribute case. Furthermore they combine with the analysis of multivariate probability distributions and with concepts of stochastic dependence. The concept of copula also constitutes a very important tool for this work, mainly for two purposes. The first one is linked to the analysis of target-based utilities, the other one is in the comparison between classical stochastic order and the concept of "stochastic precedence". This topic finds its application in statistics as well as in the study of Markov Models linked to waiting times to occurrences of words in random sampling of letters from an alphabet. In this work I give a generalization of the concept of stochastic precedence and we discuss its properties on the basis of properties of the connecting copulas of the variables. Along this work I also trace connections to reliability theory, whose aim is studying the lifetime of a system through the analysis of the lifetime of its components. The target-based model finds an application in representing the behavior of the whole system by means of the interaction of its components.

The Target-Based Utility Model. The role of Copulas and of Non-Additive Measures / Fantozzi, Fabio. - (2014 Oct 07).

The Target-Based Utility Model. The role of Copulas and of Non-Additive Measures

FANTOZZI, FABIO
07/10/2014

Abstract

My studies and my Ph.D. thesis deal with topics that recently emerged in the field of decisions under risk and uncertainty. In particular, I deal with the "target-based approach" to utility theory. A rich literature has been devoted in the last decade to this approach to economic decisions: originally, interest had been focused on the "single-attribute" case and, more recently, extensions to "multi-attribute" case have been studied. This literature is still growing, with a main focus on applied aspects. I will, on the contrary, focus attention on some aspects of theoretical type, related with the multi-attribute case. Various mathematical concepts, such as non-additive measures, aggregation functions, multivariate probability distributions, and notions of stochastic dependence emerge in the formulation and the analysis of target-based models. Notions in the field of non-additive measures and aggregation functions are quite common in the modern economic literature. They have been used to go beyond the classical principle of maximization of expected utility in decision theory. These notions, furthermore, are used in game theory and multi-criteria decision aid. Along my work, on the contrary, I show how non-additive measures and aggregation functions emerge in a natural way in the frame of the target-based approach to classical utility theory, when considering the multi-attribute case. Furthermore they combine with the analysis of multivariate probability distributions and with concepts of stochastic dependence. The concept of copula also constitutes a very important tool for this work, mainly for two purposes. The first one is linked to the analysis of target-based utilities, the other one is in the comparison between classical stochastic order and the concept of "stochastic precedence". This topic finds its application in statistics as well as in the study of Markov Models linked to waiting times to occurrences of words in random sampling of letters from an alphabet. In this work I give a generalization of the concept of stochastic precedence and we discuss its properties on the basis of properties of the connecting copulas of the variables. Along this work I also trace connections to reliability theory, whose aim is studying the lifetime of a system through the analysis of the lifetime of its components. The target-based model finds an application in representing the behavior of the whole system by means of the interaction of its components.
7-ott-2014
File allegati a questo prodotto
File Dimensione Formato  
Tesi Fantozzi.pdf

accesso aperto

Note: Tesi dottorato
Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 986.05 kB
Formato Adobe PDF
986.05 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/917318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact