Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diver- sity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species’ target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history.
Conserving the functional and phylogenetic trees of life of European tetrapods / Wilfried, Thuiller; Maiorano, Luigi; Mazel, Florent; Guilhaumon, Franc ̧ois; Ficetola, Gentile Francesco; Lavergne, Se ́bastien; Renaud, Julien; Roquet, Cristina; David, Mouillot. - In: PROCEEDINGS - ROYAL SOCIETY. BIOLOGICAL SCIENCES. - ISSN 0962-8452. - STAMPA. - 370:1662(2015), pp. 1-12. [10.1098/rstb.2014.0005]
Conserving the functional and phylogenetic trees of life of European tetrapods
MAIORANO, Luigi;
2015
Abstract
Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diver- sity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species’ target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history.File | Dimensione | Formato | |
---|---|---|---|
Thuiller_Conserving_2015.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.