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Protected areas (PAs) are pivotal tools for biodiversity conservation on the
Earth. Europe has had an extensive protection system since Natura 2000
areas were created in parallel with traditional parks and reserves. However,
the extent to which this system covers not only taxonomic diversity but also
other biodiversity facets, such as evolutionary history and functional diver-
sity, has never been evaluated. Using high-resolution distribution data of all
European tetrapods together with dated molecular phylogenies and detailed
trait information, we first tested whether the existing European protection
system effectively covers all species and in particular, those with the highest
evolutionary or functional distinctiveness. We then tested the ability of PAs
to protect the entire tetrapod phylogenetic and functional trees of life by
mapping species’ target achievements along the internal branches of these
two trees. We found that the current system is adequately representative
in terms of the evolutionary history of amphibians while it fails for the
rest. However, the most functionally distinct species were better represented
than they would be under random conservation efforts. These results imply
better protection of the tetrapod functional tree of life, which could help to
ensure long-term functioning of the ecosystem, potentially at the expense of
conserving evolutionary history.

1. Introduction
Protecting rare, threatened or emblematic species has always guided conservation
strategies [1,2]. To this end, gap analyses have traditionally been used to identify
priorities in reinforcing the effectiveness of protected area (PA) systems for sustain-
ing viable populations and ensuring the local persistence of those populations
while also favouring the protection of the remaining species [3,4]. Gap analysis
is essentially an investigation of the overlap between the distributions of species
and given PAs and is used to define the extent to which species are represented
within PAs. This is then compared to prescribed species’ targets, usually defined
in order to ensure local persistence and based on species ranges [5].

As it has been recognized that the diversity of biological features held by
different species deserves attention beyond the number and the status of species
[6–8], conservationists have explored how effective PA networks are in protecting
phylogenetic and functional diversity [9–11]. Through the course of evolution,
species diversification and extinction lead to having species representing different
amounts of evolutionary history, some species being unique in representing long
evolutionary history (i.e. echidna for mammals [12]). The extinction of a species in
an old, monotypic or species-poor clade would thus lead to a greater loss of
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phylogenetic diversity than that of a species belonging to a
young lineage with many close relatives [13]. By combining a
metric that measured mammal species evolutionary distinc-
tiveness (i.e. contribution of a species to the overall tree of
life) together with extinction risk, the EDGE framework was
the first to assess the ability of PA networks to protect those dis-
tinct and endangered species [14]. However, this approach has
been applied neither to other groups nor to large PA networks
and has never been extended to other biological features.

Even though species evolutionary distinctiveness is key to
prioritizing conservation efforts, it overlooks other important
biological features such as functional traits that support eco-
system functioning and resilience to environmental changes
[15,16]. In fact, species that support the most distinct combi-
nations of traits, i.e. which have the highest functional
distinctiveness, are not necessarily the most evolutionary dis-
tinct because species traits result from interplays between the
history of natural selection, adaptive convergence and phylo-
genetic conservatism across time [17,18]. There is, therefore,
an urgent need to assess (either empirically or theoretically)
whether evolutionary distinct species are also functionally dis-
tinct in order to better prioritize conservation efforts to target
the rarest of the rare [19]. A recent analysis has indeed high-
lighted that the most distinct combination of traits are
predominantly supported by rare species [16]. If those rare
species are not adequately protected, some particular functions
will be highly vulnerable, potentially imperilling particular
ecosystem processes [20]. The same applies when species
with particular evolutionary history or functionality are also
endemic of the area under investigation.

In terms of conservation efforts, Europe has one of the most
extensive PA networks around the world. In addition to its tra-
ditional national parks and reserves, Europe also has Natura
2000 areas (in the countries involved in EU28 only), which
were created to ensure the long-term persistence of species
and habitats [21]. Natura 2000 is based on special protection
areas, classified under the Birds Directive to protect important
sites for rare and vulnerable birds, and special areas of conser-
vation classified under the Habitats Directive to protect rare
and vulnerable animals, plants and habitats [21].

A recent study has shown that although species represen-
tation within Natura 2000 is uneven, the network is relatively
efficient in protecting target species (i.e. species with a specific
conservation focus) and minimizes the number of gap species,
e.g. species with no protected range [22]. However, this rep-
resentation may be challenged by climate change [23] and
whether the phylogenetic and functional diversity is adequately
protected remains unknown.

In this paper, we have conducted a comprehensive gap
analysis to assess the effectiveness of the European PA network’s
(national parks, reserves and Natura 2000) representativeness in
terms of two overlooked facets of biodiversity in addition to the
number of species: the breadth of evolutionary history and the
functional diversity of most animal tetrapods occurring within
Europe. The defined species-specific conservation targets are
inversely proportional to species range sizes, so we first tested
to see whether the most evolutionary and functionally distinct
species are well-represented relative to other species. This analy-
sis was carried out for all species occurring in Europe, with a
specific focus on species endemic to Europe. By calculating
how close species were to their conservation targets, we were
then able to analyse how representative the European PA
system is in terms of overall tetrapod phylogenetic and

functional diversity. We compared the results to those obtained
from a null model simulating random conservation efforts across
species, independently of their biological features.

2. Material and methods
(a) Study area and protected area networks
The study area included the entire European sub-continent plus
Anatolia in order to include a complete picture of the North
Mediterranean coast (hereafter: Europe; electronic supplemen-
tary material, figure S1). We conducted the analyses by
combining two PA networks: PAs belonging to the International
Union for Conservation of Nature (IUCN) category I and II from
the World Database on Protected Areas (http://protectedplanet.
net/) and all Natura 2000 areas (http://www.eea.europa.eu/)
for the EU28 within the entire European sub-continent.

(b) Species distributions
We collected data on 288 mammals, 509 birds, 104 amphibians
and 239 squamate reptiles. These datasets were compiled from
Maiorano et al. [24]. For mammals and amphibians, the main
data sources were extent of occurrences (EOOs) compiled by the
IUCN Global Mammal Assessment and Global Amphibian Assess-
ment [25]. For bird species, the EOOs available from Hagemeijer &
Blair [26] were combined with those available from the BWPi2.0.1
DVD-ROM (Birds of the Western Palearctic interactive 2006,
v. 2.0.1). For squamates, the main data source for EOOs were
Sindaco & Jeremcenko [27] and Sindaco et al. [28], integrated for a
few species with the Global Reptile Assessment [25].

For the four groups, the EOOs were then refined using habi-
tat preferences for all species, obtained from expert opinion and
published literature [24]. The collected data were used to assign a
suitability score (0, unsuitable, 1, suitable habitat) to each of the
46 GlobCover land-use/land-cover classes (300 m resolution).
Scores were used to remove unsuitable cells (scored 0) and to
refine EOOs of the four species groups (no presence data were
added, but false presence data were removed [29].

The EOO for all species of all groups was thereby refined to
300 m resolution and was then evaluated against field data for
34 species of amphibians (37% of the 92 amphibians considered
in the final species list; see paragraph below), 272 species of
birds (71.4% of the 381 breeding birds considered in the final
species list), 88 mammals (33.8% of the 246 mammals considered
in the final species list) and 33 squamates (16.8% of the 196 squa-
mates considered in the final species list). All refined EOOs
evaluated for amphibians and mammals performed significantly
better than random ones, while the percentage was lower for
squamates (97.1% of the refined EOOs performing better than
random) and breeding birds (96.3% of the refined EOOs perform-
ing better than random). Full details of the model evaluation
procedure are provided in the electronic supplementary material
and in Maiorano et al. [24].

For all species, we also calculated the proportion of their
complete global range found within in Europe by dividing the
surface area of the European portion of their distribution range
(non-refined EOO) by the area of their global range. Data on
global distributions were taken from IUCN Global Mammal
Assessment and Global Amphibian Assessment [25], from [30],
and from Sindaco & Jeremcenko [27] and Sindaco et al. [28]. We
coined this metric as the endemicity status with a scale ranging
theoretically from 0%, when the species does not occur in
Europe, to 100%, when the species is strictly endemic to Europe.

(c) Phylogenetic trees
Phylogenetic data for mammals were based on the updated super-
tree of Fritz & Purvis [31]. We used 100 fully resolved phylogenetic
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trees, where polytomies were randomly resolved using a birth–death
model to simulate branch lengths [32]. We updated these phylo-
genetic trees by replacing the Carnivora clade in this phylogeny
with a highly resolved supertree published more recently [33].

For birds and amphibians, we extracted the 100 dated and fully
dichotomous phylogenetic trees from Roquet et al. [34] and Zupan
et al. [10], respectively.

For squamates, phylogenetic inference was based on DNA
sequence data from seven nuclear (BDNF, c-mos, NT3, PDC, R35,
RAG-1 and RAG-2) and six mithocondrial loci (12S, 16S, COI,
cytB, ND2 and ND4), which were extracted from GenBank with
PHLAWD [35]. We included three levels of outgroup taxa: Spheno-
don punctata (closest living relative to Squamata); European turtles,
two crocodilians (Alligator and Crocodylus) and two birds (Dromaius
and Gallus); and finally, two mammals (Mus and Pan). DNA
sequences were aligned with MAFFT [36] and ambiguous regions
were trimmed with trimAl [37]. A phylogenetic analysis was con-
ducted with RAXML [38] to search for 100 maximum-likelihood
trees, while applying a family tree constraint based on Pyron et al.
[39]. The 100 trees were dated with penalized-likelihood as
implemented in r8s [40]; we constrained five nodes based on
fossil information extracted from Mulcahy et al. [41].

(d) Functional traits and functional trees
We chose to restrict our analyses to comparable traits between the
four groups. We thus selected traits that represent informative
niche dimensions. These were body mass/body length, diet type,
feeding behaviour, nesting position, reproduction and activity
(see the electronic supplementary material, Functional trait data-
base). These traits are known to relate to ecosystem functioning
because they summarize or are linked to trophic interactions and
resource acquisition [42–44] and were selected for this reason.

For birds, trait information was extracted from [18], this
source mostly obtained its data from the Handbook of the
Birds of the Western Palaearctic [45]. Missing species and data
were gathered from species-specific publications and Internet
websites dealing with avifauna. Traits for mammals, squamates
and amphibians were extracted from various sources and com-
piled by the authors (see the electronic supplementary material).

To analyse the amount of functional diversity retained by
species in the same way as the amount of phylogenetic diversity
that had been analysed, we built up functional trees of life
derived from functional trait distances between pairs of species.
We log-transformed and normalized body mass/body length to
a value between 0 and 1 prior to all analyses. We used a mixed-
variable coefficient of distance that generalizes Gower’s coeffi-
cient of distance and allows various types of variables to be
treated when calculating distances [46]. Euclidean distance was
used for body mass and body length, while the Sørensen dis-
tance [47] (S7 coefficient of Gower & Legendre [48], function
dist.ktab in ade4) was used for all remaining binary traits. We
then used hierarchical clustering to build a dendrogram of all
species in functional-trait space, employing an average agglom-
eration method (UPGMA, function hclust) [49]. The use of
functional dendrograms is somewhat controversial because it is
difficult to fully grasp the ecological nature of hierarchy [50]. It
is relatively logical, however, to consider feeding behaviour and
diet to be nested because a carnivore that eats large prey generally
hunts to catch it. We checked the extent to which functional vari-
ation was hierarchical by correlating the phenetic distances
(pairwise distances across the dendrogram) with the pairwise
distances in the initial distance matrix used to construct the den-
drogram. Mantel tests using 9999 randomizations showed very
high and significant correlations for the four groups (amphibians:
86%, birds: 82%, mammals: 80% and squamates: 87%) highlighting
here that the use of a functional dendrogram did not lead to a
strong distortion of the functional space [49].

Given that trait and/or phylogenetic information were not
available for all species, we finally restricted our analyses to
381 birds, 246 mammals, 196 squamates and 92 amphibians.
We retained species for examination where all traits were avail-
able or where a maximum of one trait was not available. Out
of the 915 species analysed, 280 were strictly endemic to Europe.

(e) Gap analysis
The major advantage of using EOOs refined at 300 m, to rep-
resent the amount of suitable habitat within the coarse
resolution EOO, was that this provided an accurate match
when compared with the PAs. We were thus able to lay the
refined EOO for each species over the European PAs and thereby
determine what proportion of their current European range was
represented within the PA system.

One of the most subjective aspects of gap analyses is in the
definition of species-specific representation targets. In terms of
range within the PA network, this meant the level above which
we would consider a species to be adequately covered. These
specific targets are necessarily related to species range sizes as
restricted species need more coverage than widespread ones to
avoid extinction [51]. Accordingly, species-specific conservation
targets, or the proportion of species geographical ranges that
had to fall within the PA system in order to ensure their persist-
ence, were set to be inversely proportional to log-transformed
European species’ range sizes. Hence, species with restricted
ranges required 100% of their range to be covered, whereas wide-
spread species only required 10% [52]. We fitted a linear
regression between these two extremes to define the target for
the remaining species (see the electronic supplementary material,
figure S2). We conducted the species-specific target estimations
for the four groups separately. This had the advantage of
enabling us to take into consideration the fact that the minimum
range size for a reptile is different than for a bird species, for
instance. This approach assumed that the species with the largest
range is in an optimal situation and requires a minimal level of
protection (approx. 10%).

We then extracted the proportion of range currently covered
for each species, in order to estimate how far species’ met their
defined targets (species target achievement), i.e. by dividing
this proportion by the defined target.

( f ) Data analyses
We estimated the distinctiveness of species in terms of function
and evolutionary history using the fair proportion metric pro-
posed by Isaac et al. [14]. We called ED and FD evolutionary
and functional distinctiveness, respectively. For each species,
this was given by the sum of branch lengths between all nodes
from the tip to the root, divided by the number of species sub-
tending each branch. They sum to phylogenetic and functional
diversity, that were given by Faith [7] and Petchey & Gaston
[53], respectively. For this purpose, we used the function
evol.distinct from the package picante [54] in R [55].

A rooted tree is required when calculating this metric. We ran
this function over each of the 100 resolved phylogenetic trees for
the four groups. All reported results are the median taken across
the 100 phylogenetic trees.

To estimate the effectiveness of conservation in terms of func-
tional and phylogenetic trees, we built on the approach used to
estimate the resilience of phylogenetic trees to species extinctions
[56,57]. In the extinction risk case, the overall tree of life is scaled
by the survival probability of each species. Here, the same
reasoning was applied, but the scaling was done using species’
target achievements. A conservative approach was taken and it
was assumed that the PA system effectively covered a given
branch of the phylogenetic or functional tree when at least one
of the species subtending to this branch met its conservation
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target. The proportion of target achievement for internal
branches was thus obtained by taking the maximum target
achievement among the subtending species.

An interesting feature of this strategy was that the overall
diversity of the ‘protected’ tree (i.e. the total sum of branch
length including the root [7,53]) could then be compared to the
original tree’s diversity in order to find the proportion of the tree
of life represented within the PA system (‘conservation effective-
ness, CE’). CE thus ranges from zero, where all the species are
completely outside the PA system, to one, where conservation
targets are met for all species and therefore, all branches. We esti-
mated CE for functional and phylogenetic diversity and for each of
the four groups. We then compared each result to those obtained
from a null model where species’ target achievements were
placed at random on the tips of the trees, thus simulating
random conservation efforts across species and internal branches.

3. Results
(a) Species coverage within protected area system,

target achievement and distinctiveness
Only 8.8% of the European area was represented within the
PA system. The proportion of species ranges currently covered
varied within and between groups (figure 1). Most importantly,
rare species had variously, high and low coverage for amphi-
bians, birds and mammals. The rarest squamates always had
a high coverage and relatively high species’ target achievement.
Conversely, the rarest mammals were generally poorly covered
by the European PA system, which meant that they had poor

target achievement. Interestingly, some common squamates
had species’ conservation target achievement much higher
than 100% because they have moderate range sizes compared
with the other groups that are highly embedded with the
PA system.

These results were not influenced by the endemicity status
of the species (electronic supplementary material, figure S3).
The percentage coverage by PAs for endemic species some-
times reached much higher values than that for the rest of the
species, but conversely a relatively high number of endemic
species were not well covered by the PA system and did not
have high target achievement (electronic supplementary
material, figure S4).

In general, species’ target achievement was significantly
higher for amphibians (median¼ 56%) than for the three
other groups (median ¼ 29%, 26% and 29% for birds, mam-
mals and squamates, respectively; electronic supplementary
material, figure S5). In other words, the current PA system
achieves better coverage for amphibians than for other tetra-
pods. These results reflect the level of PA coverage for these
species as well as the contrast between Western Europe,
which is highly protected, and Eastern Europe, which is
poorly protected. Species’ target achievement examined in
function of species mean position in Europe shows that species
whose centre of distribution is in south Eastern Europe (e.g.
Anatoly) generally have low species’ target achievement, nota-
bly for mammals and squamates. Amphibians’ distribution, in
contrast, is generally centred in southwestern Europe, a region
that is well covered by PAs and certainly explains why amphi-
bians have such better coverage (electronic supplementary
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Figure 1. Species range covered by the European PA system according to species range size. Each species is represented by a dot. Species range size is expressed in
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material, figure S6). For endemics, the median falling within
protected zones was 19%, while the median of species’ target
achievement was 42%.

In general, weak relationships between species’ target
achievements and our two measures of distinctiveness (figures 2
and 3) were found. In terms of evolutionary distinctiveness,
relationships were relatively weak and non-significant for all
species groups, although there was a general negative trend,
especially when considering the 90% quantile regression
(figure 1; electronic supplementary material, table S1). In
other words, the most evolutionary distinct species tended to
be less well represented within the current PA system than
other species, except for birds. These results held true for ende-
mic species as no significant relationship was found between
endemicity status and evolutionary distinctiveness (electronic
supplementary material, figure S7).

When focusing on functional distinctiveness, a significant
positive relationship was found between species’ target
achievement and functional distinctiveness for amphibians
and squamates only (figure 3; electronic supplementary
material, table S1). Functionally distinct amphibian and squa-
mates species tended to be better protected than functionally
common species. These results also held true for endemic
species as there was no significant relationship between
endemicity status and functional distinctiveness (electronic
supplementary material, figure S8).

We then investigated how far species’ conservation targets
were met along the gradient of evolutionary and functional
distinctiveness. The most distinct species in terms of both bio-
diversity facets were generally poorly protected, except for
birds (figure 4). For example, the European beaver Castor
fiber is one of the most distinct mammals in Europe, both in
terms of evolutionary history (it is the only species of the
family Castoridae in Europe) and its functions (e.g. as ecosys-
tem engineer), and its target achievement was relatively low.
This is probably because most of its range falls within poorly
protected eastern parts of Europe. Conversely, the wild boar
Sus scrofa, a widespread species, which is also relatively distinct
both along the evolutionary gradient (it is the only species of
the Suidae family in the study area) and the functional gradi-
ent, showed a relatively high target achievement, probably
owing to its game hunting properties and its high occurrence
in well-protected habitats (European mountains are highly pro-
tected). Even for amphibians, which generally had higher
species’ target achievement than the three other groups, the
two most distinct species (Salamandrella keyserlingii and
the olm Proteus anguinus) were far from meeting their targets.
Although the former species also occurs in eastern Asia,
the latter is endemic to Europe and is the only obligate
cave-dweller chordate in Europe.

As demonstrated by quantile regressions (figure 2), a
trend towards lack of protection for the most evolutionary
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Figure 2. Evolutionary distinctiveness according to species’ target achievements. The black line represents the ordinary least square (OLS) regression line, while the
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distinct species of the four groups and the most functionally
distinct mammals was observed.

(b) Conservation effectiveness of evolutionary and
functional diversity

When scaling up species’ target achievement onto the func-
tional and phylogenetic trees, the CE analysis highlights
important differences among groups (table 1, and figures 5
and 6). First of all, CE for amphibians was much higher
than for the other groups when both phylogenetic and func-
tional aspects were taken into consideration (table 1). Second,
the general trend was for phylogenetic diversity to be less
protected than expected given random species’ target
achievement across the phylogenetic tree (figure 5). In other
words, when looking at the protection of the entire tree of
life, evolutionary distinct species tended to have lower
target achievement leading to lower CE. This was significant
for mammals and squamates but not for amphibians and
birds. For squamates, it is likely that the significant effect
was partly caused by a strong clustering of low species’
target achievement along the phylogeny (electronic sup-
plementary material, figure S9).

Third, when considering the overall protection of the
functional tree of life, the pattern was reversed with the
exception of mammals (figure 6). Functional diversity was
overall better protected than expected when compared with
random results for squamates, birds and amphibians,

although this was significant in the case of amphibians
only. Conversely, for mammals, the protection of the func-
tional tree of life was lower than expected when compared
with a random distribution of the species’ target achieve-
ment. Functionally distinct mammals thus tended to have
lower target achievements than other mammals. This was
also demonstrated by the clustering of low species’ target
achievements on one part of the functional tree for mammals
because of a significant functional signal in species’ target
achievements (electronic supplementary material, figure S9).

4. Discussion
In the current global context of scarce resources allocated to
conservation, there is now a general consensus that beyond
focusing on the mere number of species or on those with
major extinction risks, other facets of biodiversity need to be
taken into account [14,16,58,59]. Here, we have pioneered a
continental gap analysis by accounting for both functional
and phylogenetic components of tetrapod diversity in
Europe. We asked whether the current PA system in Europe
provides effective coverage for both the evolutionary and func-
tional tetrapod trees of life. We defined those trees and
associated measures for distinctiveness for species occurring
in the European region under study. These definitions required
a large assumption to be made, because distinct species in
Europe might not necessarily be distinct at a global scale
while rare and unprotected species might actually have large
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protected ranges outside Europe. For the latter, we argue that
as conservation prioritization is often carried out at a continental
(i.e. European Union) or at a national level, a precautionary
approach is to be recommended [60]. National protection
does not necessarily follow global trends but instead may be
decided according to interest in a particular species, its rarity

and its characteristics. These characteristics, here defined by
the contribution of the species to the European phylogenetic
and functional trees of life, are crucial for ecosystem function-
ing as those species might be the ones ensuring long-term
stability and resilience [15,16,61]. Our focus on endemic
species also supports our strategy since the most evolutio-
nary and functionally distinct species were not necessarily
marginal species from outside Europe. Instead, there was
no general rule, and the most evolutionary and functionally
distinct species could either be endemic to Europe or more
cosmopolitan species.

One key result of our analysis was the generally poor
conservation target achievement found for all tetrapods
except amphibians. There are several explanations for these
low values. Our strategy was based on species ranges,
which is somewhat arbitrary since it relies on a linear
regression between large and small range species along a
log scale. Although being generally well accepted [52,62,63],
this approach assumes that the overall need for protection
linearly scales with the logarithm of range size and that the
largest range size may be considered to be the optimal
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Table 1. CE in Europe. CE represents the ratio of the represented
evolutionary and functional diversity in PAs to the overall evolutionary and
functional diversity, respectively (reported in %).

CE

evolutionary history functional diversity

amphibian 67.7 64.4

birds 44.1 41.7

mammals 49.3 41.0

squamates 48.8 56.5
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equilibrium range. Furthermore, in our approach, conserva-
tion targets are somewhat different among the four clades
considered. Average range size of amphibians is much smal-
ler than those of mammals and birds. In practice, restricted
birds have range sizes comparable to those of amphibians
with relatively broad distributions. As the conservation tar-
gets were specifically defined for the four clades, species
with similar ranges but belonging to different clades may
show different targets. The achievement of targets should
be therefore compared among species within given clades,
while comparisons between clades should be made with cau-
tion. Nevertheless, conservation targets were similar when
defined on the basis of IUCN criteria (electronic supplemen-
tary information, figure S10), which are not clade specific,

thus supporting the robustness of our conclusions. Given
that there is no better alternative, as optimal population
range sizes are unknown, we can therefore assume that our
species-group-based strategy, provides a reasonable estimation
of extinction risk at the continental scale [51].

Only 8.8% of Europe is covered by PAs and this coverage is
not evenly distributed either in terms of different land cover
types (electronic supplementary material, table S2) nor across
Europe (electronic supplementary material, figure S1). The
level of protection in Europe is highly heterogeneous with a
strong western–eastern gradient. The percentage of coverage
and associated species’ target achievement do reflect this bias
(electronic supplementary material, figure S6). The arid
steppes of Eastern Europe are covered by almost no PAs.
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Figure 5. Species’ target achievements mapped onto the phylogenetic tree of each group. For the four groups (a – d ), species’ target achievements were mapped
onto the tree. For each internal branch, the maximum target achievement for the descendant was taken. Colours from red to blue indicate lowest to highest CE. The
subplot in the corner represents the CE under random species’ target achievements along the tree (9999 repeats). Red indicates the level of significance at 0.05 and
95%. The black line indicates the observed CE. The black asterisk close to the black line indicates significance at 0.05 (one sided). The trees and null models have
been carried out over one randomly taken tree from the 100 maximum-likelihood trees for each group.
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This explains the relatively low species’ target achievement for
mammals, squamates and, to a lower extent, for birds. Small
mammals from the eastern steppic areas (e.g. Allactaga, Sicista,
Meriones, Tatera, Rombomys, Spalax, Mesocricetus and Allocrice-
tulus) have in common to be little covered by the existing
network. On the other hand, the representation of land cover
type in PAs is biased with respect to European reality. In
other words, most PAs, such as national parks, were placed
in remote areas or where it was convenient and were not
necessarily designed only in terms of specific conservation pur-
poses. This is not true for Natura 2000, which was specifically
designed to protect specific habitats or species. This bias
towards failing to represent different land cover types in the

PA network has obvious consequences on species protection
and therefore on species’ target achievement. For instance,
the most well-represented land cover types in PAs are perma-
nent snow, bare areas and salt hardpans, while croplands,
grasslands, mosaic vegetation and aquatic habitats are
obviously among the least represented within PAs (2–4%,
electronic supplementary material, table S2). Although the
global intensification of agriculture and ever-increasing urban-
ization are known to favour local extinctions [64], some of these
areas are also known to be settings that harbour specific types
of biodiversity, notably areas of low intensity and low input
farming systems in Europe (i.e. concept of High Nature
Value [65]). The same applies to aquatic habitats that are
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Figure 6. Species’ target achievements mapped onto the functional tree of each group. For the four groups, species’ target achievements were mapped onto the
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in the corner represents the CE under random species’ target achievements along the tree (9999 repeats). Red indicates the level of significance at 0.05 and 95%.
The black line indicates the observed CE. The black asterisk close to the black line indicates significance at 0.05 (one sided). The trees and null models have been
carried out over one randomly taken tree from the 100 maximum-likelihood trees for each group.
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poorly protected but so important for lots of birds and
mammal species. This is perhaps why mammals and birds
seem to have low target achievement. In Europe, many bird
and mammal species are associated with traditional agricul-
tural landscapes: agricultural intensification and the
abandonment of traditional agricultural practices are causing
a widespread decline in species [66]. Traditional conservation
approaches, such as PAs, may therefore not be the most appro-
priate tools for the conservation of farmland birds, and other
approaches such agri-environmental schemes need to be
implemented for their conservation [67,68]. However, these
schemes are not absolutely effective, and it is impossible to
obtain comprehensive and broad-scale information about
them [66]. For these reasons we did not integrate agri-environ-
mental schemes into our analyses, and conservation actions
taken to protect farmland birds may be underestimated. Never-
theless, farmland bird communities carry out key functions in
ecosystems, such as the regulation of pest insects [69], and con-
stitute a major priority for biodiversity conservation in Europe.

Interestingly, amphibians emerged as the best-protected
species in Europe within the scope of our species targets.
Amphibians are the vertebrates with the smallest ranges
and highest endemism in Europe. Several of the endemic
amphibians with the smallest ranges (e.g. Hydromantes cave
salamanders, Calotriton arnoldi, Salamandra lanzai) are concen-
trated on islands and mountainous ranges of Southern
Europe (e.g. Sardinia, the East of the Iberian Peninsula, the
southwestern Alps [70]; electronic supplementary material,
figure S6). In these areas, the preservation of highly endemic
and endangered amphibians attracts appropriate conserva-
tion efforts. For instance, the protection of endemic
amphibians had a major role in the creation of several
Natura 2000 areas in Sardinia. Our analyses show that this
system seems to be relatively effective, although it may be jeo-
pardized later by climate change [23]. Nevertheless, the level
of protection remains poor for some restricted and poorly
known species endemic to Anatolia, such as Mertensiella cau-
casica and basically the whole genus Lyciasalamandra (with the
exception of only Lyciasalamandra helverseni, which reached
slightly more than 50% of its target) and Neurergus. Notably,
all species of the genus Lyciasalamandra are endemic to small
areas of Turkey, with a couple of species expanding their
range towards Greece. They are threatened according to
IUCN categories (www.iucnredlist.org) and subject to huge
problems linked to possible future tourism developments
(with the associated habitat loss) and over-collection for
scientific purposes (electronic supplementary material,
figure S6). The same problem is also faced by the two species
in the genus Neurergus, one of which (Neurergus strauchii) is
endemic to Turkey, both of which have very low coverage
by PAs.

When phylogenetic trees of life and the scaling up of
species coverage along the branches is examined, the most
evolutionary distinct species seem to be less protected than
expected when compared with random results or there
appears to be strong phylogenetic clustering of species with
low species’ target achievement, in particular for squamates.
This is important since it has been shown here that these evol-
utionary distinct species are not necessarily marginal species
in Europe but instead are often even endemic to Europe. The
loss of evolutionary distinct species could thus affect the
European tree of life disproportionally, and thereby have a
tremendous overall effect on the feature diversity they

represent [71]. Recently, Mouillot et al. [16] demonstrated
that rare species usually bear distinct functions that could
put ecosystems functioning at risk if they go extinct, therefore
urging us to consider functional distinctiveness in conserva-
tion assessments. This has been done here and it has been
shown that target achievement for one of the most function-
ally distinct species, the olm, is far from being met. However,
apart from in the case of mammals, our assessment demon-
strates that the functional tree of life is better protected than
the evolutionary tree of life (figure 5) and that the contri-
bution of distinct species to its protection was significant.
The choice of traits and the functions these traits capture
obviously defines this assessment. Functional traits chosen
here include behavioural traits during feeding to reflect
how species acquire resources from their environment (feed-
ing behaviour and activity), and log-transformed body mass/
length and diet traits are used to reflect the resource require-
ments. These traits determine the impact of a given organism
on community structure and ecosystem functioning [72,73],
although the distinction between effect and response traits
(traits that stand for the response of organisms to environ-
mental change) is not always straightforward for animals
[42]. The set of traits selected, can therefore be expected to
be an appropriate proxy of functions, such as plant popu-
lation regulation and seed transportation, which thereby
help to maintain plant diversity by lowering the effects of
interspecific competition,and enhancing dispersal [74,75].
As another example, cavity-drillers and nest-burrowers are
recognized as ecosystem engineers that provide shelter to
additional species [43,75,76], whrease large mammals and
top carnivores are known to have a disproportionate role in
the regulation of the whole food chain [77]. Besides these
functions that are essential to the functioning of the ecosys-
tem, many tetrapods also provide important educational,
cultural and recreational services for nature enthusiasts and
contribute to global nutrient dynamics [75]. It is therefore
important that these functions are adequately protected.
Thus, the results of this study argue for the incorporation
of both those aspects, evolutionary history and functionality,
in conservation planning. Next steps should include assess-
ment of how the current European PA system could be
extended to Eastern Europe at minimal cost but taking tetra-
pod evolutionary history into account, and maximizing the
range of fundamental and derived ecosystem services those
species could sustain, to generate a win–win situation.
Additionally, the dual effects of climate and land-use
change on the phylogenetic and functional diversity of
Europe should be included in future conservation planning
as these changes could jeopardize the effectiveness of the cur-
rent protection system [23,57,78]. The spatial data used here
could be very useful in drawing up the borders for future
long-term planning for phylogenetic and functional diversity
conservation at a European level.
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