The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers’ requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
An approximate dynamic programming approach to resource management in multi-cloud scenarios / Pietrabissa, Antonio; Delli Priscoli, Francesco; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - STAMPA. - 90:3(2017), pp. 492-503. [10.1080/00207179.2016.1185802]
An approximate dynamic programming approach to resource management in multi-cloud scenarios
PIETRABISSA, Antonio
;DELLI PRISCOLI, Francesco;DI GIORGIO, ALESSANDRO;Giuseppi, Alessandro;PANFILI, MARTINA;
2017
Abstract
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers’ requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.File | Dimensione | Formato | |
---|---|---|---|
Pietrabissa_An-approximate_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
932.02 kB
Formato
Adobe PDF
|
932.02 kB | Adobe PDF | Contatta l'autore |
Pietrabissa_postprint_An-approximate_2017.pdf
accesso aperto
Note: https://doi.org/10.1080/00207179.2016.1185802
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
424.67 kB
Formato
Adobe PDF
|
424.67 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.