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An Approximate Dynamic Programming Approach to 

Resource Management in Multi-Cloud Scenarios 

The programmability and the virtualization of network resources is crucial to 

deploy scalable ICT services. The increasing demand of cloud services, mainly 

devoted to the storage and computing, requires a new functional element, the Cloud 

Management Broker (CMB), aimed at managing multiple cloud resources to meet 

the customers’ requirements and, simultaneously, to optimize their usage. This 

paper proposes a multi-cloud resource allocation algorithm that manages the 

resource requests with the aim of maximizing the CMB revenue over time. The 

algorithm is based on Markov Decision Process modelling and relies on 

Reinforcement Learning techniques to find on-line an approximate solution. 

Keywords: cloud networks; resource management; reinforcement learning; 

Markov decision process; approximate dynamic programming. 

1 Introduction 

The increasing use of cloud infrastructures to rapidly deploy services leads the cloud 

operators to adopt programmable infrastructure paradigms. Instead of carefully design a 

dedicated, static, hardware infrastructure, the operators prefer to acquire the hardware 

(storage, computation and network resources) and manage them using a standard 

software. The Openflow protocol (McKeown et al., 2008) is a pragmatic example of 

Software-Defined Networking (SDN), where the logic network managed by Openflow is 

totally decoupled by the physical infrastructures that host the Openflow controller and 

the Openflow switches. Openstack (Sefraoui, Aissaoui, & Eleuldj, 2012) is another 

example of programmable infrastructure. While Openflow virtualizes only the network 

elements, Openstack allows virtualizing also the storage and the computing services. The 

virtualization layer adopted by Openflow and Openstack is an abstraction layer that 

allows the engineers to create logical networks, storage and computing services on top of 

any hardware configuration, in a technology independent fashion.  

Even though the resources abstraction operated by the software-defined 

paradigms allows the dynamic programmability of the available hardware resources, this 

paradigm still highly depends on a fine tuning of the underlying physical machines. They 

must be deployed, configured and maintained, often manually. A further step beyond the 

resources programmability is the adoption of pure virtualized infrastructures, where the 

physical machines host a number of virtualized machines, each of which deputed to 

provide a finite and dedicated set of functionalities. The advantage of resource 

virtualization is the rapid deployment, maintenance and scaling up of existing 

environments. For instance, in case of a software or hardware malfunction, a virtual 

machine can be automatically migrated or rebooted. Network Functions Virtualization 

(NFV) is an emerging paradigm that exploits the machine virtualization to setup a pure 

virtualized network management system, in which each functionality runs on top of a 

virtual machine. The idea behind the NFV is to virtualize any network function (such as 

DHCP, NAT, Firewall, FTP, Web Hosting, etc.) so that the network configuration can be 

personalized and dynamically adapted to a specific customer’s need automatically or by 

means of software APIs. The idea of deploying resources (such as storage, networking 

and computing) on-demand eliminates maintenance costs related to their ownership and, 



thus, can radically change the operators’ policies and the way they can collaborate to best 

match their customers’ needs. 

This paper assumes to operate in a scenario where the cloud operators make use 

of programmable resources and virtualized functionalities to manage their infrastructures. 

In this scenario, different cloud providers offer to their customers a variety of resources, 

either infrastructural or software. These resources are assigned based on the users’ 

demands. 
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Figure 1. Representation of a multi-cloud system 
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Figure 2. CMB architecture example. 

 



A Cloud Management Broker (NIST, 2013) gives the users an interface to request 

the resources they need and allocates them on the different available cloud providers 

depending on various factors, such as availability, cost, and Quality of Service (QoS) 

requirements. Figures 1 and 2 show a multi-cloud scenario and a possible CMB 

architecture (see (Oddi, Panfili, Pietrabissa, Zuccaro, & Suraci, 2013) for details); in this 

scenario, the CMB role is crucial, since it is responsible both of the actual management 

of the multi-cloud resources and of satisfying the QoS needed by the users. It is then 

crucial to study algorithms to optimize and control the CMB resource usage. 

The CMB concept is widely studied in the framework of several Future Internet 

related initiatives. This paper is based on the work performed by the authors in the 

framework of the Italian project PLATINO (PLATINO, 2015), of the EU FP7 project T-

NOVA (T-NOVA, 2015), and of the European PPP FP7 Future Internet initiative (FI-

Core, 2015; FIWARE, 2014). The paper is focused on the resource allocation aspect of 

the CMB, but the CMB role covers other key aspects, such as user information and 

preferences management, monitoring of the status of the cloud providers, real time match 

of security requirements and so on. Generally, a CMB is then not to be considered as a 

simple request translator between users and cloud providers, but as a more complex actor 

in the multi cloud system. 

 

The CMB Resource Allocator role is to find and allocate resources to match every 

user request – e.g., in terms of storage, computing power, bandwidth – over a group of 

heterogeneous cloud providers. Two options exist to fulfill this task: 

(1) allocate the needed resources on-demand, on a pay-per-use cost model; 

(2) allocate the needed resources on a set of pre-purchased resources. 

Both approaches have their pros and cons. With the former approach, the CMB 

can achieve high efficiency in the resource usage, whereas the latter approach may lead 

to higher profits, since pre-assigned resources are likely to be less expansive (e.g., the 

CMB could benefit from special quantity discounts). 

The Resource Allocator task is then to decide how to fulfill the user requests, i.e., 

which resources have to be mapped (fully or in part) on the pre-purchased resources and 

which resources need some additional on-demand resources, with the aim of maximizing 

a given reward function over a time horizon. In the depicted scenario, the reward function 

is the net profit of the CMB. 

1.1 State-of-the-art and paper contribution 

For the time being, the multi-cloud problem has been mostly dealt with from an 

architectural point of view. Compatible One (CompatibleOne, 2015) is a solution which 

homogenizes language and interfaces for the description of the services offered by 

multiple cloud providers. This is an example of infrastructure that seems to be perfect to 

host advanced optimization and control algorithms such as the one proposed in this paper. 

The architectural frameworks in (Sirocco, 2015) and (Buyya, Ranjan, & Calheiros, 2010) 

allow a unified usage of resources belonging to different cloud providers; however, no 

novel optimization techniques are proposed, but only architectural visions. As far as 



resource management techniques in cloud environments are concerned, (Wu, Kumar 

Garg, & Buyya, 2012) proposes an integrated scheduling and admission control algorithm 

which manages multiple IaaS providers, but it is based on heuristic rules. The papers 

(Rennie & Mccallum, 1999) and (Konstanteli, Cucinotta, Psychas, & Varvarigou, 2012) 

propose algorithms for resource allocation and admission control, respectively, but are 

applied to optimize a single cloud. The recent work in (Woo & Mirkovic, 2014) proposes 

an ad-hoc algorithm for the application allocation on multiple public clouds. The 

application workflow is described as a sequence of multiple transactions and tries to 

minimize the cost as well as to satisfy some Service Level Agreement (SLA) 

requirements. The solution algorithm in (Woo & Mirkovic, 2014) is very simple (it is 

based on exhaustive research) but it does not consider users demand distributions and it 

is only compared to the single cloud scenario. 

 

Resource management problems in communications have been dealt with by 

numerous operations research (e.g., (Chaisiri, Lee, & Niyato, 2012; Macone, Oddi, Palo, 

& Suraci, 2013)) and control-theoretical methodologies (e.g., (Manfredi, 2014a, 2014b; 

Mascolo, 1999)). The proposed approach relies on a Markov Decision Process (MDP) 

modelling of the problem. MDPs catch both the research for an optimal solution of 

operations research methodologies and the system dynamics characterizing control-

theoretical methods. 

The scenario and the problem presented in this paper were introduced in (Oddi et 

al., 2013), where the CMB Resource Allocator problem is defined as a MDP and solved 

by Dynamic Programming (DP) algorithm. The utilization of DP algorithms in real 

networks is however limited by the fact that the probability distribution of the users’ 

demand must be known in advance, and by scalability issues due to the large state-space, 

whose dimension explodes in realistic scenarios. It is well-known that the optimal control 

policy can be found off-line by means of DP algorithms and on-line by means of RL 

algorithms. Differently from the former algorithms, the RL approach does not rely on the 

knowledge of the transition probabilities and of the reward, which are learnt from direct 

experience without the need of a complete model of the environment (for this reason, RL 

methods are often referred to as model-free methods). 

Reinforcement Learning (RL) approaches, as the one proposed here, are used in 

adaptive control-theory due to their ability to ‘learn’ the environment (i.e., the model) on-

line (Lewis & Vrabie, 2009; Yang, Liu, & Wang, 2014), and are also applied to resource 

management problems in many fields (as, for instance, communications (Pietrabissa, 

2011a), robotics (Tan, Balajee, & Lynn, 2014), electric vehicles (Di Giorgio, Liberati, & 

Pietrabissa, 2013) and so on). In (Pietrabissa et al., 2015), two RL algorithms were 

proposed to solve the CMB Resource Allocator problem. However, the algorithms 

proposed in (Pietrabissa et al., 2015) are still not scalable enough to be applied to real 

scenarios, and approximation techniques are then needed (e.g., (Pietrabissa, 2008a, 

2008b, 2009)). In this respect, the contribution of this paper is that it adapts the state 

aggregation policy proposed in (Pietrabissa, 2008a) to the multi-cloud environment 

described in (Pietrabissa et al., 2015) and develops a RL algorithm on the aggregated 

model. 



1.2 Paper organization 

The paper is organized as follows: in Section 2, key concepts on MDP and RL are 

summarized; Section 3 models the CMB Resource Allocator problem as a MDP presents 

the proposed approximate RL algorithm; Section 4 shows the results of some numerical 

simulations; finally, Section 5 draws the conclusions and outlines some future researches. 

2 Preliminaries 

This Section introduces some key concepts relevant to MDP and RL. 

2.1 Markov Decision Processes 

A MDP is a discrete-time stochastic control process defined by the 

tuple {𝑆, 𝐴, 𝑇, 𝑟, Σ, 𝛾}, where 𝑆 is a discrete, finite state set, 𝐴(𝑠) is the finite action set in 

state 𝑠, 𝑇 is the state transition probability matrix, 𝑟 is the reward function, i.e., 𝑟(𝑠, 𝑎, 𝑠′) 

is the immediate reward obtained in 𝑠 when action 𝑎 is taken and state 𝑠′ is the next state, 

Σ ∈ [0; 1]|𝑆| is the initial state distribution over the state space 𝑆, and 𝛾 ∈ (0,1) is the 

discount factor, that weights immediate rewards versus future rewards. Standard MDP 

definitions rely on the Markovian (or memory-less) property and on the stationary 

distribution of the stochastic process. Under these assumptions, 𝑇 is stationary and its 

element 𝑡(𝑠, 𝑎, 𝑠′) is the probability that the system trajectory transits from state 𝑠 to 𝑠′ 

when action 𝑎 is taken. 

A stationary policy 𝑢 is a mapping of each state to an action, i.e., 𝑢(𝑠) = 𝑎, 𝑠 ∈

𝑆, 𝑎 ∈ 𝐴(𝑠)1. The MDP problem is aimed at finding an optimal policy 𝑢∗: 𝑆 → 𝐴 that 

maximizes, in the long run, the expected discounted reward: 

𝑅(𝑢) ≔ 𝐸𝑢,Σ{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ }, (1) 

where 𝑠(𝑡) and 𝑎(𝑡) denote the state and the action at time 𝑡, respectively, and 𝐸𝑢,Σ{⋅} 

denotes the expected value under policy 𝑢 with initial state distribution Σ. 

Finally, the value function 𝑉𝑢(𝑠) is the expected discounted reward starting from 

𝑠 and following policy 𝑢 thereafter, and the action-value function 𝑄𝑢(𝑠, 𝑎) is the expected 

discounted reward, starting from s, taking action a and following policy 𝑢 thereafter: 

𝑉𝑢(𝑠) = 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ | 𝑠(0) = 𝑠},  (2) 

𝑄𝑢(𝑠, 𝑎) = 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ | 𝑠(0) = 𝑠, 𝑎(0) = 𝑎}, (3) 

where 𝐸𝑢{⋅} denotes the expected value under policy 𝑢. 

2.2 Reinforcement Learning 

As mentioned in Section 1, the paper interest is in solving the MDP by means of 

RL algorithms. Let the system be in a given state 𝑠 ∈ 𝑆; RL algorithms take an action 𝑎 ∈

 

1 For the sake of simplicity, we consider only integer policies, i.e., policies which select one action 

in each state; note that this choice is not restrictive, since it can be shown (Puterman, 1994) that 

an integer optimal policy always exists for unconstrained MDPs. 



𝐴(𝑠) based on a given control rule and then observe the next state 𝑠′ ∈ 𝑆 and the obtained 

reward 𝑟(𝑠, 𝑎, 𝑠′) after the transition. Based on the observations, the RL algorithms update 

an estimate of the value function of state 𝑠 or of the action-value function of the couple 

(𝑠, 𝑎). 

Different RL algorithms differ by the rule used to decide the control action and 

by the rule used to update the value (or action-value) function. In this paper, for the sake 

of simplicity, the Q-learning algorithm is considered, but more complex RL algorithms 

can be straightforwardly used (e.g., SARSA(λ), as in (Pietrabissa et al., 2015), actor-critic 

methods (Sutton & Barto, 1998), …). The update rule of Q-Learning is the following: 

𝑄(𝑠(𝑡), 𝑎(𝑡)) ← 𝑄(𝑠(𝑡), 𝑎(𝑡)) +  

+𝛼(𝑡) [𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1)) + 𝛾 max
𝑎∈𝐴(𝑠(𝑡+1))

𝑄(𝑠(𝑡 + 1), 𝑎) − 𝑄(𝑠(𝑡), 𝑎(𝑡))],  (4) 

where the learning rate 𝛼(𝑡) > 0 is the key parameter for the algorithm convergence: if 

∑ 𝛼(𝑡)𝑡=1,…,∞ = ∞ and ∑ (𝛼(𝑡))
2

𝑡=1,…,∞ < ∞, the estimate (4) converges to the optimal 

action-value function as 𝑡 → ∞ (Sutton & Barto, 1998). The action is then decided based 

on the current estimate of the state-action value function, and the current best policy is: 

𝑢(𝑠) = argmax
𝑎∈𝐴(𝑠)

𝑄(s, a) , 𝑠 ∈ 𝑆. (5) 

As the estimate (4) converges to the optimal action-value function, the policy (5) 

converges to an optimal policy. 

To guarantee a certain degree of exploration of the state space set, an ε-greedy 

rule is followed: in state 𝑠 ∈ 𝑆, the current best action (5) is taken by the controller with 

probability 1 − ε, where ε ∈ (0,1) is the exploration rate; with probability ε a random 

action 𝑎 ∈ 𝐴(𝑠) is chosen, i.e.: 

𝑢(𝑠) ← {
argmax
𝑎∈𝐴(𝑠)

𝑄(s, a) , with prob.  1 − 𝜀

rand{𝑎 ∈ 𝐴(𝑠)} ,with prob.  𝜀     
, 𝑠 ∈ 𝑆. (6) 

A large value of 𝜀 guarantees that different policies with respect to the current best one 

are explored, and thus avoids that the system remains stuck in a local minimum. A small 

value of ε, on the other hand, let the system choose the best action based on the current 

estimates of the action-value function and favor the exploitation of the current best policy. 

The choice of 𝛼(𝑡) and 𝜀 depends on the specific application. 

3 Problem formulation and proposed controller 

This Section models the CMB Resource Allocator as a MDP (Section 3.1), describes the 

proposed approximated MDP (Sections 3.2 and 3.3) and defines the RL control algorithm 

(Section 3.4). 

3.1 Problem formulation 

In this Section, the problem model introduced in (Oddi et al., 2013) is 

summarized. 



Let 𝐾 be the set of different cloud services available to the users, and let 𝐶 be the 

set of different cloud providers interfaced with the CMB. Different resources may be 

provided by the cloud providers; for the sake of simplicity, storage and processing 

resources are considered.  

Each cloud provider is characterized by the amount of pre-purchased resources, 

hereafter referred to as static resources and denoted with 𝑊𝑐, 𝑐 = 1,… , 𝐶. 

On-demand resources can be purchased from any provider by paying an additional 

cost, which is proportional to the purchased quantity. Each service is characterized by the 

amount of resources needed to meet the QoS requirements, denoted with 𝑤𝑘, 𝑘 = 1,… , 𝐾. 

Thus, 𝑤𝑘 represents the total amount of resources which needs to be allocated by the 

CMB on a cloud provider. 

It is assumed that, for each service type 𝑘 = 1,… , 𝐾, the service requests arrive 

according to a Poisson distribution in time with intensity 𝜈𝑘 and their duration  is 

exponentially distributed with mean termination frequency 𝜇𝑘. 

 

The state 𝑠(𝑡) ∈ 𝑆 is defined as a vector that represents the number of allocated 

services of each type 𝑘, on each cloud 𝑐, at time 𝑡: 

𝑠(𝑡) =  (𝑛𝑐𝑘(𝑡))𝑐=1,…,𝐶
𝑘=1,…,𝐾

, with 𝑛𝑐𝑘 = 0,1,2, … . (7) 

The total amount of resources required at the time t by all the allocated services 

on cloud provider c is then: 

𝜂𝑐(𝑠(𝑡)) = ∑ 𝑛𝑐𝑘(𝑡) ⋅ 𝑤𝑘𝑘=1,…,𝐾 , 𝑐 = 1, … , 𝐶. (8) 

The state space S is defined as 

𝑆 = {𝑠 = (𝑛𝑐𝑘)𝑐=1,…,𝐶
𝑘=1,…,𝐾

|𝜂𝑐(𝑠) = ∑ 𝑛𝑐𝑘 ⋅ 𝑤𝑘𝑘=1,…,𝐾 ≤ 𝑊𝑐} = {𝑠1, 𝑠2, … , 𝑠𝑁}. (9) 

Since the considered resources (storage and processing) are additive, and since 

the static resources 𝑊𝑐 are finite, the discrete state space 𝑆 is finite as well, with 𝑁 states. 

It is also considerd an initial state distribution Σ over the state space 𝑆. With little abuse 

of notation, the number of services of type 𝑘 on cloud 𝑐 in state 𝑠 is denoted with 𝑛𝑐𝑘(𝑠). 

 

Considering that the CMB can request additional on-demand resources, in each 

state 𝑠 it is always possible to accept a new request of a service 𝑘 by allocating additional 

on-demand resources on a given cloud provider (i.e., a new request is never rejected). Let 

𝛿𝑐𝑘 be a 𝐾 × 𝐶 vector of zeros but the element associated to the cloud 𝑐 and the type 𝑘 

equal to 1. Then, in each state 𝑠 a request of service 𝑘 can be allocated on the static 

resources of cloud 𝑐 if and only if 𝑠 + 𝛿𝑐𝑘 ∈ 𝑆; otherwise, on-demand resources have to 

be purchased. 

The action space 𝐴 is defined as follows: 



𝐴(𝑠𝑖) = {𝑎 = (𝑎𝑐𝑘
𝑗
)𝑐=1,…,𝐶
𝑘=1,…,𝐾
𝑗∈{𝑝,𝑜}

|𝑎𝑐𝑘
𝑝 ∈ {0,1} if 𝑠𝑖 + 𝛿𝑐𝑘 ∈ 𝑆, 𝑎𝑐𝑘

𝑝 = 0 if 𝑠𝑖 + 𝛿𝑐𝑘 ∉ 𝑆, 𝑎𝑐𝑘
𝑜 ∈

{0,1}, 𝑐 = 1,… , 𝐶, ∑ ∑ 𝑎𝑐𝑘
𝑖 = 1, 𝑘 = 1,… , 𝐾𝑐=1,…,𝐶𝑖∈{𝑝,𝑜} } , 𝑖 = 1,… ,𝑁. (10) 

where 𝑎𝑐𝑘
𝑝

 denotes the action of mapping a request of service 𝑘 on the static resources of 

cloud 𝑐, and 𝑎𝑐𝑘
𝑜  denotes the action of mapping a request of service 𝑘 on on-demand 

resources of cloud 𝑐. By fixing one action for each state, the controller defines a policy. 

The policy 𝑢 is admissible if 𝑢(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑁. The policy space 𝑈 is the set of 

all the admissible policies: 

𝑈 = {(𝑢(𝑠𝑖))𝑖=1,…,𝑁|𝑢
(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑁}. (11) 

The greedy policy, denoted with 𝑢𝑔 = (𝑢𝑔(𝑠𝑖))
𝑖=1,…,𝑁

, is the policy which, in 

every state, selects the action that mapping each service on the available cloud with the 

maximum reward. The greedy policy is an admissible policy, i.e., 𝑢𝑔 ∈ 𝑈. 

 

The transitions between states occur according to the arrival and termination 

frequencies and to the admission decisions: 

• when the system under policy 𝑢 is in state 𝑠 and the action 𝑢(𝑠) is to allocate the 

service 𝑘 on the static resources of cloud 𝑐, the transition from state 𝑠 to state 𝑠 +

𝛿𝑐𝑘 occurs with frequency 𝜆𝑘 (arrival frequency of service 𝑘 request); 

• since a mapped service 𝑘 on cloud 𝑐 terminates with termination frequency 𝜇𝑘, 

when the system is in state 𝑠 the transition from state 𝑠 to state 𝑠 − 𝛿𝑐𝑘 occurs 

with frequency 𝑛𝑐𝑘(𝑠) ⋅ 𝜇𝑘, regardless of the policy 𝑢; 

• when the system under policy 𝑢 is in state 𝑠 and the action 𝑢(𝑠) is to allocate the 

service 𝑘 on the on-demand resources of cloud 𝑐, the self-transition occurs with 

frequency 𝜆𝑘 (arrival frequency of service 𝑘 request). 

 

Finally, the reward 𝑟(𝑠, 𝑎, 𝑠′) gained by the system when it is in state 𝑠, takes 

action 𝑎 and arrival state is 𝑠′ is defined as follows: 

𝑟(𝑠𝑖, 𝑎, 𝑠𝑗) =

{
 

 
𝑟𝑐𝑘
𝑝   if 𝑠𝑗 = 𝑠𝑖 + 𝛿𝑐𝑘, 𝑐 = 1,… , 𝐶, 𝑘 = 1,… , 𝐾           

𝑟𝑐𝑘
𝑜   if a service 𝑘 request occurs, 𝑠𝑗 = 𝑠𝑖, 𝑎𝑐𝑘

𝑜 = 1

𝑐 = 1,… , 𝐶, 𝑘 = 1,… , 𝐾
0  otherwise                                                               

  

, 𝑖, 𝑗 = 1, … ,𝑁, 𝑎 ∈ 𝐴(𝑠𝑖), (13) 

where 𝑟𝑐𝑘
𝑝

 and 𝑟𝑐𝑘
𝑜  are the profits obtained allocating a service of class 𝑘 on cloud 𝑐 on 

static and on-demand resources, respectively. 



 

The MDP described so far has continuous-time transitions determined by the 

arrival and termination frequencies. It is possible to define discrete-time transitions, i.e., 

to define the transition matrix 𝑇, by following a two-step procedure: 

(1) divide the transition frequencies of each state by a constant 𝑓 such that 

𝑓 > max
𝑖=1,…,𝑁

(∑
𝜆𝑘

𝑓𝑘=1,…,𝐾 +∑
𝑛𝑐𝑘(𝑠𝑖)⋅𝜇𝑘

𝑓
𝑘=1,…,𝐾
𝑐=1,…,𝐶

); 

(2) add self-transitions in such a way that the outgoing probability is 1 for all the states. 

The resulting transition probabilities are: 

𝑡(𝑠𝑖, 𝑎, 𝑠𝑗) =

{
 
 

 
 

𝜆𝑘

𝑓
𝑎𝑐𝑘
𝑝  if 𝑠𝑗 = 𝑠𝑖 + 𝛿𝑐𝑘, 𝑐 = 1,… , 𝐶, 𝑘 = 1, … , 𝐾

𝑛𝑐𝑘(𝑠)⋅𝜇𝑘

𝑓
 if 𝑠𝑗 = 𝑠𝑖 − 𝛿𝑐𝑘, 𝑐 = 1, … , 𝐶, 𝑘 = 1,… , 𝐾

1 − ∑ 𝑡(𝑠𝑖, 𝑎, 𝑠𝑙)𝑙=1,…,𝑁
𝑙≠𝑖         

 if 𝑠𝑗 = 𝑠𝑖                             

,  

𝑖, 𝑗 = 1,… , 𝑁, 𝑎 ∈ 𝐴(𝑠𝑖). (12) 

The described procedure is known as uniformization, and it can be shown (see, 

e.g., (Bertsekas, 1987)) that the discrete-time MDP with transition probabilities (12) is 

equivalent, from the long-term properties viewpoint, to the originating continuous-time 

MDP. 

 

In this paper, the interest is in maximizing the expected discounted reward (1)2, 

which can be also computed as: 

𝑅(𝑢) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢(𝑠𝑖))𝑖=1,…,𝑁 , 𝑢 ∈ 𝑈, (14) 

where 𝑦𝑢(𝑠) is the expected discounted sojourn time that the system spends in state 𝑠 

under policy 𝑢. The described stationary MDP is ergodic unichain (i.e., under all 

stationary policies, it is aperiodic and has a single recurrent class and possibly a non-

empty set of transient states, see (Puterman, 1994) for details), since the transitions are 

aperiodic and the transitions due to service terminations are always positive and are 

independent of the policy (see also (Pietrabissa, 2011b)). Therefore, the expected sojourn 

times 𝑦𝑢’s exist and are finite, and their values can be computed by means of the linear 

programming formulation of the MPD (Puterman, 1994), which requires the knowledge 

of the transition matrix.  

3.2 Policy restriction 

As mentioned in Section 1, this paper adapts the policy restriction mechanism 

policy proposed in (Pietrabissa, 2008a) to the multi-cloud scenario. 

 
2 With some awareness, the proposed method is applicable also to the undiscounted and finite-

horizon cases. 



As observed by simulations, when the load of the clouds is scarce, it is reasonable 

to accept all the new services, since in those conditions the optimal policy most likely 

enforces a greedy policy. Thus, if the policy space is restricted by forcing the greedy-

allocation of all the services when the load of the clouds is below a given threshold, the 

optimal policy is likely to be included in the restricted policy space. Let 𝑆̂𝜌 ⊆ 𝑆 be the 

subset of the highly-loaded states: 

𝑆̂𝜌 = {𝑠 = (𝑛𝑐𝑘)𝑐∈𝐶
𝑘∈𝐾

|𝜂𝑐(𝑠) = ∑ 𝑛𝑐𝑘 ⋅ 𝑤𝑘𝑘∈𝐾 > 𝜌 ⋅ 𝑊𝑐} = {𝑠1, 𝑠2, … , 𝑠𝑀(𝜌)}, (15) 

where 𝜌 ∈ [0,1], referred to as aggregation factor, is the parameter which establishes the 

lower limit of the fraction of the cloud resources which are controlled by the greedy 

policy. In equation (15), it is assumed that the first 𝑀(𝜌) states are the border states and 

the remaining 𝑁 −𝑀(𝜌) state are the lightly-loaded states. Clearly, 𝑀(𝜌) is a non-

increasing function of 𝜌, with 𝑀(0) = 𝑁 and 𝑀(1) = 0. The states 𝑠 ∈ 𝑆̂𝜌, where 

decisions are still to be taken by the controller, will be hereafter referred to as border 

states. 

 

In the lightly-loaded states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… ,𝑁, services are mapped in a 

greedy fashion: whenever it is possible to allocate a service on static resources, the service 

is mapped on the cloud which has the largest static reward, otherwise it is mapped on the 

cloud which has the largest on-demand reward. Since no decision has to be taken in the 

lightly-loaded states, the action space 𝐴̂𝜌(𝑠) is restricted to the border states, where it is 

equal to the original action space (10). Thus it follows that: 

𝐴̂𝜌(𝑠𝑖) = 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑀(𝜌). (16) 

The admissible policies, collected in the restricted policy space 𝑈̂𝜌, are the 

following: 

𝑢̂ = (𝑢(𝑠1), 𝑢(𝑠1), … , 𝑢(𝑠𝑀(𝜌))) |𝑢(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑀(𝜌). (17) 

 

The transition probabilities of the restricted transition matrix 𝑇̂𝜌 are the same as 

the ones in the original MDP (12), except the transitions out-going from the lightly-loaded 

states, which are now independent of the restricted policy and coincide with the transition 

probabilities (12) under the greedy action: 

𝑡̂𝜌(𝑠𝑖, 𝑎, 𝑠𝑗) = {
𝑡(𝑠𝑖, 𝑢𝑔(𝑠𝑖), 𝑠𝑗) if 𝑖 > 𝑀(𝜌)

𝑡(𝑠𝑖, 𝑎, 𝑠𝑗) otherwise
, 𝑖 = 1,…𝑁, 𝑎 ∈ 𝐴(𝑠𝑖). (18)  

 

Considering the MDP Γ̂𝜌 = {𝑆, 𝐴̂𝜌, 𝑇̂, 𝑟}, the expected average reward under 

policy 𝑢̂ is: 



𝑅̂(𝑢̂) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢̂(𝑠𝑖))𝑖=1,…,𝑀(𝜌) + (1 − 𝛾) ⋅

∑ 𝑦𝑢(𝑠𝑖)𝑟 (𝑠𝑖 , 𝑢𝑔(𝑠𝑖))𝑠=𝑀(𝜌)+1,…,𝑁 , 𝑢̂ ∈ 𝑈̂𝜌.  (19) 

In (19) it is highlighted that the greedy policy 𝑢𝑔 is enforced in the lightly-loades 

states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1, … , 𝑁. 

 

Hereafter, the MDP Γ̂𝜌 will be referred to as restricted MDP, and an optimal policy 

will be denoted as 𝑢̂𝜌
∗ . The following Theorem holds: 

 

Theorem 1. Considering the original MDP Γ under optimal policy 𝑢∗ ∈ 𝑈 and the 

restricted MDP Γ̂𝜌 under optimal policy 𝑢̂𝜌
∗ ∈ 𝑈̂𝜌,  the following inequality holds: 

𝑅(𝑢𝑔) ≤ R̂(𝑢̂𝜌
∗) ≤ 𝑅(𝑢∗). (20) 

Moreover, it follows that R̂(𝑢̂0
∗) = 𝑅(𝑢∗), R̂(𝑢̂1

∗) = 𝑅(𝑢𝑔) and R̂(𝑢̂𝜌1
∗ ) ≤ R̂(𝑢̂𝜌2

∗ ) if 𝜌1 <

𝜌2, ∀𝜌1, 𝜌2 ∈ [0,1].  ■ 

 

Proof. Consider the following subsets of the original policy space, where the 

greedy policy is enforced in the lightly-loaded states: 

𝑈𝑀(𝜌) = {𝑢 ∈ 𝑈|𝑢(𝑠𝑖) = 𝑢𝑔(𝑠𝑖), 𝑖 = 𝑀(𝜌) + 1,… ,𝑁} ⊆ 𝑈, 𝜌 ∈ [0,1]. (21) 

By definition of the restricted MDP Γ̂𝜌, the greedy policy is enforced in the lightly-

loaded states of Γ̂𝜌. Therefore,  Γ̂𝜌 under the restricted policy 𝑢̂ = (𝑢̂1, … , 𝑢̂𝑀) ∈ 𝑈̂𝜌 is 

equivalent to the original MDP Γ under the policy 𝑢𝑒𝑞 ≔

(𝑢̂1, … , 𝑢̂𝑀(𝜌), 𝑢𝑔(𝑠𝑀+1), … , 𝑢𝑔(𝑠𝑁)) ∈ 𝑈𝑀(𝜌). 

By comparing equations (14) and (19), it follows that 𝑅(𝑢𝑒𝑞) = R̂(𝑢̂). Given that 

𝑢𝑔 ∈ 𝑈𝑀(𝜌) ⊆ 𝑈, equation (20) follows. 

By definition (21), since 𝑀(𝜌) is a non-increasing function of 𝜌 with 𝑀(0) = 𝑁 

and 𝑀(1) = 0, it follows that 𝑈𝑀(0) = 𝑈, 𝑈𝑀(1) = {𝑢𝑔} and 𝑈𝑀(𝜌2) ⊆ 𝑈𝑀(𝜌1) if 𝜌1 >

𝜌2, 𝜌1, 𝜌2 ∈ [0,1]; therefore, the second part of the Theorem holds. ■ 

3.3 State aggregation 

The restricted MDP improves the scalability by reducing the policy space. To 

have a more effective scalability improvement, an aggregated MDP is considered, 

defined as Γ̅𝜌 = {𝑆𝜌̅, 𝐴̂𝜌, 𝑇̅𝜌, 𝑟̅}, where the lightly-loaded states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… ,𝑁, are 

aggregated into one single state 𝑠𝑎𝑔𝑔. 

The aggregated state space is then: 

𝑆𝜌̅ = {𝑠1, 𝑠2, … , 𝑠𝑀(𝜌)} ∪ {𝑠𝑎𝑔𝑔}. (22) 



The aggregated action space is defined over the border states only (as with the 

lightly-loaded states in the restricted case, the greedy actions are always performed in the 

aggregated state 𝑠𝑎𝑔𝑔). Therefore, the aggregated action and policy spaces are equal to 

the restricted action space 𝐴̂𝜌 and to the restricted policy space 𝑈̂𝜌, respectively. 

 

Unfortunately, for the aggregated state 𝑠𝑎𝑔𝑔 it is not possible to explicitly define 

the transition probabilities and the associated reward, since, when the system is in state 

𝑠𝑎𝑔𝑔, it is actually in one of the aggregated states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… , 𝑁. Hereafter, the 

transition matrix and the reward function for the aggregated MDP under a restricted 

policy 𝑢̂ ∈ 𝑈̂ will be defined by assuming that the sojourn times of Γ̂𝜌 under 𝑢̂ are known. 

The aggregated transition matrix is denoted as 𝑇̅𝜌 = (𝑡𝜌̅(𝑠, 𝑎, 𝑠
′)) 𝑠,𝑠′∈𝑆̅𝜌

𝑎∈𝐴̂𝜌(𝑠)

; the 

transitions between border states are the same as the transitions 𝑡̂𝜌(𝑠, 𝑎, 𝑠
′) defined by eq. 

(18). 

The sojourn time in the aggregate state under policy 𝑢̂ is equal to: 

𝑦𝑢(𝑠𝑎𝑔𝑔) = ∑ 𝑦𝑢(𝑠𝑖)𝑖=𝑀(𝜌)+1,…,𝑁 . (23) 

Then, the out-going transition probabilities are computed as: 

[𝑡𝜌̅(𝑠𝑎𝑔𝑔, 𝑠𝑗)]𝑢
= ∑ (

𝑦𝑢̂(𝑠𝑖)

𝑦𝑢̂(𝑠𝑎𝑔𝑔)
⋅ 𝑡̂𝜌(𝑠𝑖, 𝑢𝑔(𝑠𝑖), 𝑠𝑗))𝑖=𝑀(𝜌)+1,…,𝑁 , 𝑗 = 1,… ,𝑀(𝜌), (24) 

where [𝑡]𝑢 denotes the transition probability 𝑡 under policy 𝑢̂. The in-going transitions 

are computed as: 

𝑡𝜌̅(𝑠𝑗 , 𝑢̂(𝑠𝑗), 𝑠𝑎𝑔𝑔) = ∑ 𝑡̂𝜌(𝑠𝑗 , 𝑢̂(𝑠𝑗), 𝑠𝑖)𝑖=𝑀(𝜌)+1,…,𝑁 , 𝑗 = 1,… ,𝑀(𝜌). (25) 

The self-transition probability [𝑡𝜌̅(𝑠𝑎𝑔𝑔, 𝑠𝑗)]𝑢
 is always computed as in eq. (12) 

by following the uniformization procedure.  

Similarly, the reward of the border states is the same as the reward of the original 

MDP, i.e., 𝑟̅(𝑠𝑖, 𝑎(𝑠𝑖)) = 𝑟(𝑠𝑖, 𝑎(𝑠𝑖)), 𝑖 = 1, … ,𝑀, whereas the sojourn times of the Γ̂𝜌 

should be known in advance to compute the reward of the aggregate state under policy 𝑢̂:  

[𝑟̅(𝑠𝑎𝑔𝑔)]𝑢̂ =
∑ (

𝑦𝑢̂(𝑠𝑖)

𝑦𝑢̂(𝑠𝑎𝑔𝑔)
⋅ (𝑠𝑖 , 𝑢𝑔(𝑠𝑖)))𝑖=𝑀(𝜌)+1,…,𝑁 , (26) 

where [𝑟]𝑢 denotes the reward 𝑟 under policy 𝑢̂. 

The expected average reward of Γ̅𝜌 under policy 𝑢̂ is then: 

𝑅̅(𝑢̂) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢̂(𝑠𝑖))𝑖=1,…,𝑀(𝜌)   

+(1 − 𝛾) ⋅ 𝑦𝑢(𝑠𝑎𝑔𝑔)[𝑟̅(𝑠𝑎𝑔𝑔)]𝑢̂, 𝑢̂ ∈ 𝑈̂𝜌.  (27) 

 



Property 1. The aggregated MDP Γ̅𝜌 = {𝑆𝜌̅, 𝐴̂𝜌, 𝑇̅𝜌, 𝑟̅} under policy 𝑢̂ generates the 

same expected reward of the restricted MDP Γ̂𝜌 = {𝑆, 𝐴̂𝜌, 𝑇̂𝜌, 𝑟} under policy 𝑢̂: 𝑅̂(𝑢̂) =

𝑅̅(𝑢̂).  ■ 

 

Proof. By substituting equation (26) into equation (27), which computes 𝑅̅(𝑢̂), 

equation (19) , which computes 𝑅̂(𝑢̂), is straightforwardly obtained. ■ 

 

From Property 1, the following result follows: 

 

Corollary 1. An optimal policy 𝑢̂𝜌
∗  of the restricted MDP Γ̂𝜌 is also an optimal 

policy of the aggregated MDP Γ̅𝜌.  ■ 

 

Corollary 2 follows from Theorem 1 and Corollary 1: 

 

Corollary 2. Considering the original MDP Γ under optimal policy 𝑢∗and the 

aggregated MDP Γ̅𝜌 under optimal restricted policy 𝑢̂𝜌
∗ ,  the following inequality holds: 

𝑅(𝑢𝑔) ≤ 𝑅̅(𝑢̂𝜌
∗) ≤ 𝑅(𝑢∗). (28) 

Moreover, 𝑅̅(𝑢̂0
∗) = 𝑅(𝑢∗), 𝑅̅(𝑢̂1

∗) = 𝑅(𝑢𝑔) and 𝑅̅(𝑢̂𝜌1
∗ ) ≤ 𝑅̅(𝑢̂𝜌2

∗ ) if 𝜌1 > 𝜌2, ∀𝜌1, 𝜌2 ∈

[0,1].  ■ 

 

The aggregated MDP Γ̅𝜌 cannot be solved by DP methods, since the computation 

of the transition matrix and of the reward under a given policy 𝑢̂ requires the knowledge 

of the sojourn times of the restricted MDP Γ̂𝜌 under the policy 𝑢̂. However, the results of 

this Section will be exploited by the RL control algorithm defined in the next Section. 

3.4 RL control algorithm 

The aggregated MDP Γ̅𝜌 can be solved by means of RL algorithms, since RL 

algorithms does not rely on the knowledge of the transition matrix and of the reward: as 

the controller takes an action in a given state, it observes from the environment both the 

next state and the immediate reward. 

Since RL algorithms converge to the optimal policy, under given assumptions, 

they can be used to find the optimal restricted policy acting on the aggregated MDP. From 

Corollary 2, it follows that the value of the aggregation factor 𝜌 determines the trade-off 

between scalability and performance of the algorithm: the number of aggregated states 

grows with 𝜌, while the expected reward generated by the optimal restricted policy 

decreases with 𝜌. 



 

In the simulations of Section 4, a Q-learning algorithm is implemented that 

performs the update rule (4) over the aggregate state space 𝑆𝜌̅ and the restricted action set 

𝐴̂𝜌. The proposed algorithm implements an 𝜀-greedy policy in the border states. In the 

aggregate state the controller always performs greedy actions and updates the action-

value function of the aggregate state accordingly (since the greedy actions are always 

taken, there is one action-value function in 𝑠𝑎𝑔𝑔, and the single action-value function 

coincides with the value function). 

The learning rate 𝛼(𝑡) has the following law: 

𝛼(𝑡) = 𝛼0
1

⌊𝑡/𝑡𝑒𝑥𝑝⌋+1
, (29) 

where ⌊⋅⌋ is the lower-integer operator, 𝛼0 is the initial learning rate and 𝑡𝑒𝑥𝑝 is the number 

of iterations during which the learning rate remains equal to 𝛼0. The learning rate (3) 

verifies the convergence conditions ∑ 𝛼(𝑡)𝑡=1,…,∞ = ∞ and ∑ (𝛼(𝑡))
2

𝑡=1,…,∞ < ∞. The 

learning rate (29) is initially large and then decays with time as the number of state visits 

grows. In fact, since it is assumed that the environment is initially unknown, an initial 

exploration is crucial for the learning phase; as the system explores the state space, the 

estimate of the action-value functions becomes more accurate and 𝛼(𝑡) is lowered 

accordingly. 

The values of the algorithm parameters have been tuned by simulation runs and 

then used in the simulations reported in Section 4. 

4 Simulations 

This Section presents some numerical simulation results. The two proposed RL 

algorithms are evaluated against the results of a DP algorithm, and also against a simple 

greedy policy. DP algorithms, scalability problems apart, find the optimal policy provided 

that the statistical distribution of the demand is known. The greedy policy is the most 

immediate policy to implement, and chooses the action that leads to the greatest 

immediate reward; it is a myopic policy, since it does not consider any time horizon: there 

is no guarantee that a choice that gives an immediate greater reward leads to a satisfactory 

expected reward over the whole time horizon.  

The algorithms are tested in different scenarios implemented in MATLAB®. 

 

In the first simulation, 3 cloud providers are available and the CMB offers 2 

classes of services. Table 1 shows the scenario parameters. Algorithm parameters were 

selected as follows: 𝛼0 = 1, 𝑡𝑒𝑥𝑝 = 103, 𝜀 = 0.98 and 𝛾 = 0.89. The simulation length 

was set to 3 ⋅ 105. All the simulation runs start from empty clouds. 

 



Table 1. Scenario 1 parameters. 

Parameter Value 

𝐶 3 

𝐾 2 

𝑊𝑐 , 𝑐 = 1,2,3 {0.3,0.3,0.2} 

𝑤𝑘 , 𝑘 = 1,2 {0.1,0.2} 

𝜆𝑘, 𝑘 = 1,2 {0.05,0.15} 

𝜇𝑘 , 𝑘 = 1,2 {0.5,0.15} 

𝑟1𝑘
𝑝
, 𝑘 = 1,2 {1,0.9,1.25} 

𝑟2𝑘
𝑝
, 𝑘 = 1,2 {2,0,2.5} 

𝑟1𝑘
𝑜 , 𝑘 = 1,2 {0.2,0.3,0.25} 

𝑟2𝑘
𝑜 , 𝑘 = 1,2 {0.35,0,0.4} 

 

In this scenario, the non-aggregated state space size 𝑁 is small (150 feasible 

states), so the optimal policy can be computed by DP algorithms. 

Fig. 3 shows the results in terms of state space size and of revenue, averaged over 

10 iterations. The figure shows that the revenue obtained with the Q-learning algorithm 

without aggregation is about 92% of the optimal revenue, whereas the revenue obtained 

with the greedy policy is about 72%. Even in this small scenario, the aggregation appears 

effective for 𝜌 = 0.2 and 𝜌 = 0.4: in both cases the revenue is above 80% (about 85% 

and 82%, respectively) with a state space size equal to 52% and 33% of the non-

aggregated state-space size, respectively. 

 



 

 

Figure 3. First simulation results: comparison among greedy policy, Q-learning with 

different levels of aggregation and optimal policy. 

 

The second simulation considers a scenario with more availability of static 

resources on the third cloud provider states, as indicated in Table 2. Algorithm parameters 

were selected as follows: 𝛼0 = 1, 𝑡𝑒𝑥𝑝 = 10
5, 𝜀 = 0.98 and 𝛾 = 0.89. The simulation 

length was set to 6 ⋅ 105. All the simulation runs start from empty clouds. In this scenario, 

the state space size 𝑁 is much larger (~104 feasible states), and DP algorithms cannot be 

used due to the scalability issue. With the proposed aggregation policy, by setting 𝜌 =

0.6, the number of states is reduced by one order of magnitude: 𝑀(𝜌) + 1 = 2.6 ⋅ 103.  
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Table 2. Scenario 2 parameters. 

Parameter Value 

𝐶 3 

𝐾 2 

𝑊𝑐 , 𝑐 = 1,2,3 {0.8,0.8,0.6} 

𝑤𝑘 , 𝑘 = 1,2 {0.1,0.2} 

𝜆𝑘, 𝑘 = 1,2 {0.5,0.6} 

𝜇𝑘 , 𝑘 = 1,2 {0.5,0.15} 

𝑟1𝑘
𝑝
, 𝑘 = 1,2 {1,1.2,1.5} 

𝑟2𝑘
𝑝
, 𝑘 = 1,2 {2,1.8,1.2} 

𝑟1𝑘
𝑜 , 𝑘 = 1,2 {0.2,0.3,0.2} 

𝑟2𝑘
𝑜 , 𝑘 = 1,2 {0.25,0.35,0.45} 

 

The results, in terms of revenue and of static allocations, averaged over 10 

iterations, are shown in Figure 4, which shows similar results to the former simulation; 

this time, the revenue obtained with the Q-learning policy averaged over 10 simulation 

runs exceeds the one obtained with the greedy policy by about 22%. The figure also shows 

that this gain was achieved thanks to a better exploitation of the static resources. 

 

 

Figure 4. Second simulation results: comparison between greedy and aggregated Q-

learning. 

5 Conclusions 

Cloud Management Brokers (CMB) will play a crucial role in Network Function 

Virtualization in the near future to allow a more flexible and scalable market. In the 

considered scenario, the CMB is interfaced with different cloud providers and manages 

their resources to satisfy the requests of the users while maximizing the CMB owner 

revenue. Therefore, a multi-cloud resource allocation problem is dealt with in this paper. 
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Firstly, the resource allocation problem is modelled as a Markov Decision Process 

(MDP). Then, the MDP is solved by means of a Reinforcement Learning algorithm; 

finally, a policy reduction and a state aggregation strategies are proposed to cope with the 

inherent scalability problems of MDPs. Numerical simulation results show that the 

approximation strategy leads to an effective reduction of the problem size while well-

approximating the revenue obtained by the optimal solution. 

Currently, the presented algorithm is being implemented in the demonstrator of 

the T-NOVA research project, but, for a ready-to-market product, further studies are still 

needed to improve its performances. A research area is to investigate approaches to 

further improve the algorithm scalability in order to reduce the storage and computational 

requirements, e.g., by means of machine-learning techniques to approximate the action-

value function over the aggregated state space (see (Xu, Zuo, & Huang, 2014) and 

references therein). This aspect is particularly important due to the so-called curse of 

dimensionality (Bertsekas, 1987), since the state-space dimension may explode in large 

multi-cloud scenarios. Another area which has to be investigated is the algorithm 

behavior and the required algorithm modifications in the presence of constraints (e.g., 

constraints on the distribution of the requests among the cloud providers or on the Quality 

of Service which has to be grant to the users). A suitable approach may be the 

lexicographic one (see (Gábor, Kalmár, & Szcpcsvári, 1998; Panfili, Pietrabissa, Oddi, & 

Suraci, 2016), where the policy improvement step is still aimed at minimizing the cost 

function but the candidate policies are also evaluated against the constraints, ranked in 

order of importance. 
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