
An Approximate Dynamic Programming Approach to

Resource Management in Multi-Cloud Scenarios

Pietrabissa Antonio, Delli Priscoli Francesco, Di Giorgio Alessandro,

Giuseppi Alessandro, Panfili Martina, Suraci Vincenzo

Department of Computer, Control and Management Engineering “Antonio Ruberti”,

University of Rome “La Sapienza”, Rome, Italy.

A. Pietrabissa is the corresponding author: e-mail: pietrabissa@dis.uniroma1.it, phone:

003977274040, fax: 003977274033.

An Approximate Dynamic Programming Approach to

Resource Management in Multi-Cloud Scenarios

The programmability and the virtualization of network resources is crucial to

deploy scalable ICT services. The increasing demand of cloud services, mainly

devoted to the storage and computing, requires a new functional element, the Cloud

Management Broker (CMB), aimed at managing multiple cloud resources to meet

the customers’ requirements and, simultaneously, to optimize their usage. This

paper proposes a multi-cloud resource allocation algorithm that manages the

resource requests with the aim of maximizing the CMB revenue over time. The

algorithm is based on Markov Decision Process modelling and relies on

Reinforcement Learning techniques to find on-line an approximate solution.

Keywords: cloud networks; resource management; reinforcement learning;

Markov decision process; approximate dynamic programming.

1 Introduction

The increasing use of cloud infrastructures to rapidly deploy services leads the cloud

operators to adopt programmable infrastructure paradigms. Instead of carefully design a

dedicated, static, hardware infrastructure, the operators prefer to acquire the hardware

(storage, computation and network resources) and manage them using a standard

software. The Openflow protocol (McKeown et al., 2008) is a pragmatic example of

Software-Defined Networking (SDN), where the logic network managed by Openflow is

totally decoupled by the physical infrastructures that host the Openflow controller and

the Openflow switches. Openstack (Sefraoui, Aissaoui, & Eleuldj, 2012) is another

example of programmable infrastructure. While Openflow virtualizes only the network

elements, Openstack allows virtualizing also the storage and the computing services. The

virtualization layer adopted by Openflow and Openstack is an abstraction layer that

allows the engineers to create logical networks, storage and computing services on top of

any hardware configuration, in a technology independent fashion.

Even though the resources abstraction operated by the software-defined

paradigms allows the dynamic programmability of the available hardware resources, this

paradigm still highly depends on a fine tuning of the underlying physical machines. They

must be deployed, configured and maintained, often manually. A further step beyond the

resources programmability is the adoption of pure virtualized infrastructures, where the

physical machines host a number of virtualized machines, each of which deputed to

provide a finite and dedicated set of functionalities. The advantage of resource

virtualization is the rapid deployment, maintenance and scaling up of existing

environments. For instance, in case of a software or hardware malfunction, a virtual

machine can be automatically migrated or rebooted. Network Functions Virtualization

(NFV) is an emerging paradigm that exploits the machine virtualization to setup a pure

virtualized network management system, in which each functionality runs on top of a

virtual machine. The idea behind the NFV is to virtualize any network function (such as

DHCP, NAT, Firewall, FTP, Web Hosting, etc.) so that the network configuration can be

personalized and dynamically adapted to a specific customer’s need automatically or by

means of software APIs. The idea of deploying resources (such as storage, networking

and computing) on-demand eliminates maintenance costs related to their ownership and,

thus, can radically change the operators’ policies and the way they can collaborate to best

match their customers’ needs.

This paper assumes to operate in a scenario where the cloud operators make use

of programmable resources and virtualized functionalities to manage their infrastructures.

In this scenario, different cloud providers offer to their customers a variety of resources,

either infrastructural or software. These resources are assigned based on the users’

demands.

Internet

Cloud

provider 1
Cloud

provider N…

Cloud Management

Broker

Cloud user 1

Cloud user M

…

Figure 1. Representation of a multi-cloud system

Cloud

provider 1

Cloud

provider N

…

Cloud user

Cloud Management Broker (CMB)

North-Bridge

API

Cloud adapter 1 Cloud adapter N
…

Request manager

Monitoring

Service

orchestrator and

aggregator

Resource

Allocator

User

management
Security

Figure 2. CMB architecture example.

A Cloud Management Broker (NIST, 2013) gives the users an interface to request

the resources they need and allocates them on the different available cloud providers

depending on various factors, such as availability, cost, and Quality of Service (QoS)

requirements. Figures 1 and 2 show a multi-cloud scenario and a possible CMB

architecture (see (Oddi, Panfili, Pietrabissa, Zuccaro, & Suraci, 2013) for details); in this

scenario, the CMB role is crucial, since it is responsible both of the actual management

of the multi-cloud resources and of satisfying the QoS needed by the users. It is then

crucial to study algorithms to optimize and control the CMB resource usage.

The CMB concept is widely studied in the framework of several Future Internet

related initiatives. This paper is based on the work performed by the authors in the

framework of the Italian project PLATINO (PLATINO, 2015), of the EU FP7 project T-

NOVA (T-NOVA, 2015), and of the European PPP FP7 Future Internet initiative (FI-

Core, 2015; FIWARE, 2014). The paper is focused on the resource allocation aspect of

the CMB, but the CMB role covers other key aspects, such as user information and

preferences management, monitoring of the status of the cloud providers, real time match

of security requirements and so on. Generally, a CMB is then not to be considered as a

simple request translator between users and cloud providers, but as a more complex actor

in the multi cloud system.

The CMB Resource Allocator role is to find and allocate resources to match every

user request – e.g., in terms of storage, computing power, bandwidth – over a group of

heterogeneous cloud providers. Two options exist to fulfill this task:

(1) allocate the needed resources on-demand, on a pay-per-use cost model;

(2) allocate the needed resources on a set of pre-purchased resources.

Both approaches have their pros and cons. With the former approach, the CMB

can achieve high efficiency in the resource usage, whereas the latter approach may lead

to higher profits, since pre-assigned resources are likely to be less expansive (e.g., the

CMB could benefit from special quantity discounts).

The Resource Allocator task is then to decide how to fulfill the user requests, i.e.,

which resources have to be mapped (fully or in part) on the pre-purchased resources and

which resources need some additional on-demand resources, with the aim of maximizing

a given reward function over a time horizon. In the depicted scenario, the reward function

is the net profit of the CMB.

1.1 State-of-the-art and paper contribution

For the time being, the multi-cloud problem has been mostly dealt with from an

architectural point of view. Compatible One (CompatibleOne, 2015) is a solution which

homogenizes language and interfaces for the description of the services offered by

multiple cloud providers. This is an example of infrastructure that seems to be perfect to

host advanced optimization and control algorithms such as the one proposed in this paper.

The architectural frameworks in (Sirocco, 2015) and (Buyya, Ranjan, & Calheiros, 2010)

allow a unified usage of resources belonging to different cloud providers; however, no

novel optimization techniques are proposed, but only architectural visions. As far as

resource management techniques in cloud environments are concerned, (Wu, Kumar

Garg, & Buyya, 2012) proposes an integrated scheduling and admission control algorithm

which manages multiple IaaS providers, but it is based on heuristic rules. The papers

(Rennie & Mccallum, 1999) and (Konstanteli, Cucinotta, Psychas, & Varvarigou, 2012)

propose algorithms for resource allocation and admission control, respectively, but are

applied to optimize a single cloud. The recent work in (Woo & Mirkovic, 2014) proposes

an ad-hoc algorithm for the application allocation on multiple public clouds. The

application workflow is described as a sequence of multiple transactions and tries to

minimize the cost as well as to satisfy some Service Level Agreement (SLA)

requirements. The solution algorithm in (Woo & Mirkovic, 2014) is very simple (it is

based on exhaustive research) but it does not consider users demand distributions and it

is only compared to the single cloud scenario.

Resource management problems in communications have been dealt with by

numerous operations research (e.g., (Chaisiri, Lee, & Niyato, 2012; Macone, Oddi, Palo,

& Suraci, 2013)) and control-theoretical methodologies (e.g., (Manfredi, 2014a, 2014b;

Mascolo, 1999)). The proposed approach relies on a Markov Decision Process (MDP)

modelling of the problem. MDPs catch both the research for an optimal solution of

operations research methodologies and the system dynamics characterizing control-

theoretical methods.

The scenario and the problem presented in this paper were introduced in (Oddi et

al., 2013), where the CMB Resource Allocator problem is defined as a MDP and solved

by Dynamic Programming (DP) algorithm. The utilization of DP algorithms in real

networks is however limited by the fact that the probability distribution of the users’

demand must be known in advance, and by scalability issues due to the large state-space,

whose dimension explodes in realistic scenarios. It is well-known that the optimal control

policy can be found off-line by means of DP algorithms and on-line by means of RL

algorithms. Differently from the former algorithms, the RL approach does not rely on the

knowledge of the transition probabilities and of the reward, which are learnt from direct

experience without the need of a complete model of the environment (for this reason, RL

methods are often referred to as model-free methods).

Reinforcement Learning (RL) approaches, as the one proposed here, are used in

adaptive control-theory due to their ability to ‘learn’ the environment (i.e., the model) on-

line (Lewis & Vrabie, 2009; Yang, Liu, & Wang, 2014), and are also applied to resource

management problems in many fields (as, for instance, communications (Pietrabissa,

2011a), robotics (Tan, Balajee, & Lynn, 2014), electric vehicles (Di Giorgio, Liberati, &

Pietrabissa, 2013) and so on). In (Pietrabissa et al., 2015), two RL algorithms were

proposed to solve the CMB Resource Allocator problem. However, the algorithms

proposed in (Pietrabissa et al., 2015) are still not scalable enough to be applied to real

scenarios, and approximation techniques are then needed (e.g., (Pietrabissa, 2008a,

2008b, 2009)). In this respect, the contribution of this paper is that it adapts the state

aggregation policy proposed in (Pietrabissa, 2008a) to the multi-cloud environment

described in (Pietrabissa et al., 2015) and develops a RL algorithm on the aggregated

model.

1.2 Paper organization

The paper is organized as follows: in Section 2, key concepts on MDP and RL are

summarized; Section 3 models the CMB Resource Allocator problem as a MDP presents

the proposed approximate RL algorithm; Section 4 shows the results of some numerical

simulations; finally, Section 5 draws the conclusions and outlines some future researches.

2 Preliminaries

This Section introduces some key concepts relevant to MDP and RL.

2.1 Markov Decision Processes

A MDP is a discrete-time stochastic control process defined by the

tuple {𝑆, 𝐴, 𝑇, 𝑟, Σ, 𝛾}, where 𝑆 is a discrete, finite state set, 𝐴(𝑠) is the finite action set in

state 𝑠, 𝑇 is the state transition probability matrix, 𝑟 is the reward function, i.e., 𝑟(𝑠, 𝑎, 𝑠′)

is the immediate reward obtained in 𝑠 when action 𝑎 is taken and state 𝑠′ is the next state,

Σ ∈ [0; 1]|𝑆| is the initial state distribution over the state space 𝑆, and 𝛾 ∈ (0,1) is the

discount factor, that weights immediate rewards versus future rewards. Standard MDP

definitions rely on the Markovian (or memory-less) property and on the stationary

distribution of the stochastic process. Under these assumptions, 𝑇 is stationary and its

element 𝑡(𝑠, 𝑎, 𝑠′) is the probability that the system trajectory transits from state 𝑠 to 𝑠′

when action 𝑎 is taken.

A stationary policy 𝑢 is a mapping of each state to an action, i.e., 𝑢(𝑠) = 𝑎, 𝑠 ∈

𝑆, 𝑎 ∈ 𝐴(𝑠)1. The MDP problem is aimed at finding an optimal policy 𝑢∗: 𝑆 → 𝐴 that

maximizes, in the long run, the expected discounted reward:

𝑅(𝑢) ≔ 𝐸𝑢,Σ{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ }, (1)

where 𝑠(𝑡) and 𝑎(𝑡) denote the state and the action at time 𝑡, respectively, and 𝐸𝑢,Σ{⋅}

denotes the expected value under policy 𝑢 with initial state distribution Σ.

Finally, the value function 𝑉𝑢(𝑠) is the expected discounted reward starting from

𝑠 and following policy 𝑢 thereafter, and the action-value function 𝑄𝑢(𝑠, 𝑎) is the expected

discounted reward, starting from s, taking action a and following policy 𝑢 thereafter:

𝑉𝑢(𝑠) = 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ | 𝑠(0) = 𝑠}, (2)

𝑄𝑢(𝑠, 𝑎) = 𝐸𝑢{∑ 𝛾𝑡 ⋅ 𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1))𝑡=0,1,…,∞ | 𝑠(0) = 𝑠, 𝑎(0) = 𝑎}, (3)

where 𝐸𝑢{⋅} denotes the expected value under policy 𝑢.

2.2 Reinforcement Learning

As mentioned in Section 1, the paper interest is in solving the MDP by means of

RL algorithms. Let the system be in a given state 𝑠 ∈ 𝑆; RL algorithms take an action 𝑎 ∈

1 For the sake of simplicity, we consider only integer policies, i.e., policies which select one action

in each state; note that this choice is not restrictive, since it can be shown (Puterman, 1994) that

an integer optimal policy always exists for unconstrained MDPs.

𝐴(𝑠) based on a given control rule and then observe the next state 𝑠′ ∈ 𝑆 and the obtained

reward 𝑟(𝑠, 𝑎, 𝑠′) after the transition. Based on the observations, the RL algorithms update

an estimate of the value function of state 𝑠 or of the action-value function of the couple

(𝑠, 𝑎).

Different RL algorithms differ by the rule used to decide the control action and

by the rule used to update the value (or action-value) function. In this paper, for the sake

of simplicity, the Q-learning algorithm is considered, but more complex RL algorithms

can be straightforwardly used (e.g., SARSA(λ), as in (Pietrabissa et al., 2015), actor-critic

methods (Sutton & Barto, 1998), …). The update rule of Q-Learning is the following:

𝑄(𝑠(𝑡), 𝑎(𝑡)) ← 𝑄(𝑠(𝑡), 𝑎(𝑡)) +

+𝛼(𝑡) [𝑟(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡 + 1)) + 𝛾 max
𝑎∈𝐴(𝑠(𝑡+1))

𝑄(𝑠(𝑡 + 1), 𝑎) − 𝑄(𝑠(𝑡), 𝑎(𝑡))], (4)

where the learning rate 𝛼(𝑡) > 0 is the key parameter for the algorithm convergence: if

∑ 𝛼(𝑡)𝑡=1,…,∞ = ∞ and ∑ (𝛼(𝑡))
2

𝑡=1,…,∞ < ∞, the estimate (4) converges to the optimal

action-value function as 𝑡 → ∞ (Sutton & Barto, 1998). The action is then decided based

on the current estimate of the state-action value function, and the current best policy is:

𝑢(𝑠) = argmax
𝑎∈𝐴(𝑠)

𝑄(s, a) , 𝑠 ∈ 𝑆. (5)

As the estimate (4) converges to the optimal action-value function, the policy (5)

converges to an optimal policy.

To guarantee a certain degree of exploration of the state space set, an ε-greedy

rule is followed: in state 𝑠 ∈ 𝑆, the current best action (5) is taken by the controller with

probability 1 − ε, where ε ∈ (0,1) is the exploration rate; with probability ε a random

action 𝑎 ∈ 𝐴(𝑠) is chosen, i.e.:

𝑢(𝑠) ← {
argmax
𝑎∈𝐴(𝑠)

𝑄(s, a) , with prob. 1 − 𝜀

rand{𝑎 ∈ 𝐴(𝑠)} ,with prob. 𝜀
, 𝑠 ∈ 𝑆. (6)

A large value of 𝜀 guarantees that different policies with respect to the current best one

are explored, and thus avoids that the system remains stuck in a local minimum. A small

value of ε, on the other hand, let the system choose the best action based on the current

estimates of the action-value function and favor the exploitation of the current best policy.

The choice of 𝛼(𝑡) and 𝜀 depends on the specific application.

3 Problem formulation and proposed controller

This Section models the CMB Resource Allocator as a MDP (Section 3.1), describes the

proposed approximated MDP (Sections 3.2 and 3.3) and defines the RL control algorithm

(Section 3.4).

3.1 Problem formulation

In this Section, the problem model introduced in (Oddi et al., 2013) is

summarized.

Let 𝐾 be the set of different cloud services available to the users, and let 𝐶 be the

set of different cloud providers interfaced with the CMB. Different resources may be

provided by the cloud providers; for the sake of simplicity, storage and processing

resources are considered.

Each cloud provider is characterized by the amount of pre-purchased resources,

hereafter referred to as static resources and denoted with 𝑊𝑐, 𝑐 = 1,… , 𝐶.

On-demand resources can be purchased from any provider by paying an additional

cost, which is proportional to the purchased quantity. Each service is characterized by the

amount of resources needed to meet the QoS requirements, denoted with 𝑤𝑘, 𝑘 = 1,… , 𝐾.

Thus, 𝑤𝑘 represents the total amount of resources which needs to be allocated by the

CMB on a cloud provider.

It is assumed that, for each service type 𝑘 = 1,… , 𝐾, the service requests arrive

according to a Poisson distribution in time with intensity 𝜈𝑘 and their duration is

exponentially distributed with mean termination frequency 𝜇𝑘.

The state 𝑠(𝑡) ∈ 𝑆 is defined as a vector that represents the number of allocated

services of each type 𝑘, on each cloud 𝑐, at time 𝑡:

𝑠(𝑡) = (𝑛𝑐𝑘(𝑡))𝑐=1,…,𝐶
𝑘=1,…,𝐾

, with 𝑛𝑐𝑘 = 0,1,2, … . (7)

The total amount of resources required at the time t by all the allocated services

on cloud provider c is then:

𝜂𝑐(𝑠(𝑡)) = ∑ 𝑛𝑐𝑘(𝑡) ⋅ 𝑤𝑘𝑘=1,…,𝐾 , 𝑐 = 1, … , 𝐶. (8)

The state space S is defined as

𝑆 = {𝑠 = (𝑛𝑐𝑘)𝑐=1,…,𝐶
𝑘=1,…,𝐾

|𝜂𝑐(𝑠) = ∑ 𝑛𝑐𝑘 ⋅ 𝑤𝑘𝑘=1,…,𝐾 ≤ 𝑊𝑐} = {𝑠1, 𝑠2, … , 𝑠𝑁}. (9)

Since the considered resources (storage and processing) are additive, and since

the static resources 𝑊𝑐 are finite, the discrete state space 𝑆 is finite as well, with 𝑁 states.

It is also considerd an initial state distribution Σ over the state space 𝑆. With little abuse

of notation, the number of services of type 𝑘 on cloud 𝑐 in state 𝑠 is denoted with 𝑛𝑐𝑘(𝑠).

Considering that the CMB can request additional on-demand resources, in each

state 𝑠 it is always possible to accept a new request of a service 𝑘 by allocating additional

on-demand resources on a given cloud provider (i.e., a new request is never rejected). Let

𝛿𝑐𝑘 be a 𝐾 × 𝐶 vector of zeros but the element associated to the cloud 𝑐 and the type 𝑘

equal to 1. Then, in each state 𝑠 a request of service 𝑘 can be allocated on the static

resources of cloud 𝑐 if and only if 𝑠 + 𝛿𝑐𝑘 ∈ 𝑆; otherwise, on-demand resources have to

be purchased.

The action space 𝐴 is defined as follows:

𝐴(𝑠𝑖) = {𝑎 = (𝑎𝑐𝑘
𝑗
)𝑐=1,…,𝐶
𝑘=1,…,𝐾
𝑗∈{𝑝,𝑜}

|𝑎𝑐𝑘
𝑝 ∈ {0,1} if 𝑠𝑖 + 𝛿𝑐𝑘 ∈ 𝑆, 𝑎𝑐𝑘

𝑝 = 0 if 𝑠𝑖 + 𝛿𝑐𝑘 ∉ 𝑆, 𝑎𝑐𝑘
𝑜 ∈

{0,1}, 𝑐 = 1,… , 𝐶, ∑ ∑ 𝑎𝑐𝑘
𝑖 = 1, 𝑘 = 1,… , 𝐾𝑐=1,…,𝐶𝑖∈{𝑝,𝑜} } , 𝑖 = 1,… ,𝑁. (10)

where 𝑎𝑐𝑘
𝑝

 denotes the action of mapping a request of service 𝑘 on the static resources of

cloud 𝑐, and 𝑎𝑐𝑘
𝑜 denotes the action of mapping a request of service 𝑘 on on-demand

resources of cloud 𝑐. By fixing one action for each state, the controller defines a policy.

The policy 𝑢 is admissible if 𝑢(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑁. The policy space 𝑈 is the set of

all the admissible policies:

𝑈 = {(𝑢(𝑠𝑖))𝑖=1,…,𝑁|𝑢
(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑁}. (11)

The greedy policy, denoted with 𝑢𝑔 = (𝑢𝑔(𝑠𝑖))
𝑖=1,…,𝑁

, is the policy which, in

every state, selects the action that mapping each service on the available cloud with the

maximum reward. The greedy policy is an admissible policy, i.e., 𝑢𝑔 ∈ 𝑈.

The transitions between states occur according to the arrival and termination

frequencies and to the admission decisions:

• when the system under policy 𝑢 is in state 𝑠 and the action 𝑢(𝑠) is to allocate the

service 𝑘 on the static resources of cloud 𝑐, the transition from state 𝑠 to state 𝑠 +

𝛿𝑐𝑘 occurs with frequency 𝜆𝑘 (arrival frequency of service 𝑘 request);

• since a mapped service 𝑘 on cloud 𝑐 terminates with termination frequency 𝜇𝑘,

when the system is in state 𝑠 the transition from state 𝑠 to state 𝑠 − 𝛿𝑐𝑘 occurs

with frequency 𝑛𝑐𝑘(𝑠) ⋅ 𝜇𝑘, regardless of the policy 𝑢;

• when the system under policy 𝑢 is in state 𝑠 and the action 𝑢(𝑠) is to allocate the

service 𝑘 on the on-demand resources of cloud 𝑐, the self-transition occurs with

frequency 𝜆𝑘 (arrival frequency of service 𝑘 request).

Finally, the reward 𝑟(𝑠, 𝑎, 𝑠′) gained by the system when it is in state 𝑠, takes

action 𝑎 and arrival state is 𝑠′ is defined as follows:

𝑟(𝑠𝑖, 𝑎, 𝑠𝑗) =

{

𝑟𝑐𝑘
𝑝 if 𝑠𝑗 = 𝑠𝑖 + 𝛿𝑐𝑘, 𝑐 = 1,… , 𝐶, 𝑘 = 1,… , 𝐾

𝑟𝑐𝑘
𝑜 if a service 𝑘 request occurs, 𝑠𝑗 = 𝑠𝑖, 𝑎𝑐𝑘

𝑜 = 1

𝑐 = 1,… , 𝐶, 𝑘 = 1,… , 𝐾
0 otherwise

, 𝑖, 𝑗 = 1, … ,𝑁, 𝑎 ∈ 𝐴(𝑠𝑖), (13)

where 𝑟𝑐𝑘
𝑝

 and 𝑟𝑐𝑘
𝑜 are the profits obtained allocating a service of class 𝑘 on cloud 𝑐 on

static and on-demand resources, respectively.

The MDP described so far has continuous-time transitions determined by the

arrival and termination frequencies. It is possible to define discrete-time transitions, i.e.,

to define the transition matrix 𝑇, by following a two-step procedure:

(1) divide the transition frequencies of each state by a constant 𝑓 such that

𝑓 > max
𝑖=1,…,𝑁

(∑
𝜆𝑘

𝑓𝑘=1,…,𝐾 +∑
𝑛𝑐𝑘(𝑠𝑖)⋅𝜇𝑘

𝑓
𝑘=1,…,𝐾
𝑐=1,…,𝐶

);

(2) add self-transitions in such a way that the outgoing probability is 1 for all the states.

The resulting transition probabilities are:

𝑡(𝑠𝑖, 𝑎, 𝑠𝑗) =

{

𝜆𝑘

𝑓
𝑎𝑐𝑘
𝑝 if 𝑠𝑗 = 𝑠𝑖 + 𝛿𝑐𝑘, 𝑐 = 1,… , 𝐶, 𝑘 = 1, … , 𝐾

𝑛𝑐𝑘(𝑠)⋅𝜇𝑘

𝑓
 if 𝑠𝑗 = 𝑠𝑖 − 𝛿𝑐𝑘, 𝑐 = 1, … , 𝐶, 𝑘 = 1,… , 𝐾

1 − ∑ 𝑡(𝑠𝑖, 𝑎, 𝑠𝑙)𝑙=1,…,𝑁
𝑙≠𝑖

 if 𝑠𝑗 = 𝑠𝑖

,

𝑖, 𝑗 = 1,… , 𝑁, 𝑎 ∈ 𝐴(𝑠𝑖). (12)

The described procedure is known as uniformization, and it can be shown (see,

e.g., (Bertsekas, 1987)) that the discrete-time MDP with transition probabilities (12) is

equivalent, from the long-term properties viewpoint, to the originating continuous-time

MDP.

In this paper, the interest is in maximizing the expected discounted reward (1)2,

which can be also computed as:

𝑅(𝑢) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢(𝑠𝑖))𝑖=1,…,𝑁 , 𝑢 ∈ 𝑈, (14)

where 𝑦𝑢(𝑠) is the expected discounted sojourn time that the system spends in state 𝑠

under policy 𝑢. The described stationary MDP is ergodic unichain (i.e., under all

stationary policies, it is aperiodic and has a single recurrent class and possibly a non-

empty set of transient states, see (Puterman, 1994) for details), since the transitions are

aperiodic and the transitions due to service terminations are always positive and are

independent of the policy (see also (Pietrabissa, 2011b)). Therefore, the expected sojourn

times 𝑦𝑢’s exist and are finite, and their values can be computed by means of the linear

programming formulation of the MPD (Puterman, 1994), which requires the knowledge

of the transition matrix.

3.2 Policy restriction

As mentioned in Section 1, this paper adapts the policy restriction mechanism

policy proposed in (Pietrabissa, 2008a) to the multi-cloud scenario.

2 With some awareness, the proposed method is applicable also to the undiscounted and finite-

horizon cases.

As observed by simulations, when the load of the clouds is scarce, it is reasonable

to accept all the new services, since in those conditions the optimal policy most likely

enforces a greedy policy. Thus, if the policy space is restricted by forcing the greedy-

allocation of all the services when the load of the clouds is below a given threshold, the

optimal policy is likely to be included in the restricted policy space. Let 𝑆̂𝜌 ⊆ 𝑆 be the

subset of the highly-loaded states:

𝑆̂𝜌 = {𝑠 = (𝑛𝑐𝑘)𝑐∈𝐶
𝑘∈𝐾

|𝜂𝑐(𝑠) = ∑ 𝑛𝑐𝑘 ⋅ 𝑤𝑘𝑘∈𝐾 > 𝜌 ⋅ 𝑊𝑐} = {𝑠1, 𝑠2, … , 𝑠𝑀(𝜌)}, (15)

where 𝜌 ∈ [0,1], referred to as aggregation factor, is the parameter which establishes the

lower limit of the fraction of the cloud resources which are controlled by the greedy

policy. In equation (15), it is assumed that the first 𝑀(𝜌) states are the border states and

the remaining 𝑁 −𝑀(𝜌) state are the lightly-loaded states. Clearly, 𝑀(𝜌) is a non-

increasing function of 𝜌, with 𝑀(0) = 𝑁 and 𝑀(1) = 0. The states 𝑠 ∈ 𝑆̂𝜌, where

decisions are still to be taken by the controller, will be hereafter referred to as border

states.

In the lightly-loaded states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… ,𝑁, services are mapped in a

greedy fashion: whenever it is possible to allocate a service on static resources, the service

is mapped on the cloud which has the largest static reward, otherwise it is mapped on the

cloud which has the largest on-demand reward. Since no decision has to be taken in the

lightly-loaded states, the action space 𝐴̂𝜌(𝑠) is restricted to the border states, where it is

equal to the original action space (10). Thus it follows that:

𝐴̂𝜌(𝑠𝑖) = 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑀(𝜌). (16)

The admissible policies, collected in the restricted policy space 𝑈̂𝜌, are the

following:

𝑢̂ = (𝑢(𝑠1), 𝑢(𝑠1), … , 𝑢(𝑠𝑀(𝜌))) |𝑢(𝑠𝑖) ∈ 𝐴(𝑠𝑖), 𝑖 = 1,… ,𝑀(𝜌). (17)

The transition probabilities of the restricted transition matrix 𝑇̂𝜌 are the same as

the ones in the original MDP (12), except the transitions out-going from the lightly-loaded

states, which are now independent of the restricted policy and coincide with the transition

probabilities (12) under the greedy action:

𝑡̂𝜌(𝑠𝑖, 𝑎, 𝑠𝑗) = {
𝑡(𝑠𝑖, 𝑢𝑔(𝑠𝑖), 𝑠𝑗) if 𝑖 > 𝑀(𝜌)

𝑡(𝑠𝑖, 𝑎, 𝑠𝑗) otherwise
, 𝑖 = 1,…𝑁, 𝑎 ∈ 𝐴(𝑠𝑖). (18)

Considering the MDP Γ̂𝜌 = {𝑆, 𝐴̂𝜌, 𝑇̂, 𝑟}, the expected average reward under

policy 𝑢̂ is:

𝑅̂(𝑢̂) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢̂(𝑠𝑖))𝑖=1,…,𝑀(𝜌) + (1 − 𝛾) ⋅

∑ 𝑦𝑢(𝑠𝑖)𝑟 (𝑠𝑖 , 𝑢𝑔(𝑠𝑖))𝑠=𝑀(𝜌)+1,…,𝑁 , 𝑢̂ ∈ 𝑈̂𝜌. (19)

In (19) it is highlighted that the greedy policy 𝑢𝑔 is enforced in the lightly-loades

states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1, … , 𝑁.

Hereafter, the MDP Γ̂𝜌 will be referred to as restricted MDP, and an optimal policy

will be denoted as 𝑢̂𝜌
∗ . The following Theorem holds:

Theorem 1. Considering the original MDP Γ under optimal policy 𝑢∗ ∈ 𝑈 and the

restricted MDP Γ̂𝜌 under optimal policy 𝑢̂𝜌
∗ ∈ 𝑈̂𝜌, the following inequality holds:

𝑅(𝑢𝑔) ≤ R̂(𝑢̂𝜌
∗) ≤ 𝑅(𝑢∗). (20)

Moreover, it follows that R̂(𝑢̂0
∗) = 𝑅(𝑢∗), R̂(𝑢̂1

∗) = 𝑅(𝑢𝑔) and R̂(𝑢̂𝜌1
∗) ≤ R̂(𝑢̂𝜌2

∗) if 𝜌1 <

𝜌2, ∀𝜌1, 𝜌2 ∈ [0,1]. ■

Proof. Consider the following subsets of the original policy space, where the

greedy policy is enforced in the lightly-loaded states:

𝑈𝑀(𝜌) = {𝑢 ∈ 𝑈|𝑢(𝑠𝑖) = 𝑢𝑔(𝑠𝑖), 𝑖 = 𝑀(𝜌) + 1,… ,𝑁} ⊆ 𝑈, 𝜌 ∈ [0,1]. (21)

By definition of the restricted MDP Γ̂𝜌, the greedy policy is enforced in the lightly-

loaded states of Γ̂𝜌. Therefore, Γ̂𝜌 under the restricted policy 𝑢̂ = (𝑢̂1, … , 𝑢̂𝑀) ∈ 𝑈̂𝜌 is

equivalent to the original MDP Γ under the policy 𝑢𝑒𝑞 ≔

(𝑢̂1, … , 𝑢̂𝑀(𝜌), 𝑢𝑔(𝑠𝑀+1), … , 𝑢𝑔(𝑠𝑁)) ∈ 𝑈𝑀(𝜌).

By comparing equations (14) and (19), it follows that 𝑅(𝑢𝑒𝑞) = R̂(𝑢̂). Given that

𝑢𝑔 ∈ 𝑈𝑀(𝜌) ⊆ 𝑈, equation (20) follows.

By definition (21), since 𝑀(𝜌) is a non-increasing function of 𝜌 with 𝑀(0) = 𝑁

and 𝑀(1) = 0, it follows that 𝑈𝑀(0) = 𝑈, 𝑈𝑀(1) = {𝑢𝑔} and 𝑈𝑀(𝜌2) ⊆ 𝑈𝑀(𝜌1) if 𝜌1 >

𝜌2, 𝜌1, 𝜌2 ∈ [0,1]; therefore, the second part of the Theorem holds. ■

3.3 State aggregation

The restricted MDP improves the scalability by reducing the policy space. To

have a more effective scalability improvement, an aggregated MDP is considered,

defined as Γ̅𝜌 = {𝑆𝜌̅, 𝐴̂𝜌, 𝑇̅𝜌, 𝑟̅}, where the lightly-loaded states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… ,𝑁, are

aggregated into one single state 𝑠𝑎𝑔𝑔.

The aggregated state space is then:

𝑆𝜌̅ = {𝑠1, 𝑠2, … , 𝑠𝑀(𝜌)} ∪ {𝑠𝑎𝑔𝑔}. (22)

The aggregated action space is defined over the border states only (as with the

lightly-loaded states in the restricted case, the greedy actions are always performed in the

aggregated state 𝑠𝑎𝑔𝑔). Therefore, the aggregated action and policy spaces are equal to

the restricted action space 𝐴̂𝜌 and to the restricted policy space 𝑈̂𝜌, respectively.

Unfortunately, for the aggregated state 𝑠𝑎𝑔𝑔 it is not possible to explicitly define

the transition probabilities and the associated reward, since, when the system is in state

𝑠𝑎𝑔𝑔, it is actually in one of the aggregated states 𝑠𝑖, 𝑖 = 𝑀(𝜌) + 1,… , 𝑁. Hereafter, the

transition matrix and the reward function for the aggregated MDP under a restricted

policy 𝑢̂ ∈ 𝑈̂ will be defined by assuming that the sojourn times of Γ̂𝜌 under 𝑢̂ are known.

The aggregated transition matrix is denoted as 𝑇̅𝜌 = (𝑡𝜌̅(𝑠, 𝑎, 𝑠
′)) 𝑠,𝑠′∈𝑆̅𝜌

𝑎∈𝐴̂𝜌(𝑠)

; the

transitions between border states are the same as the transitions 𝑡̂𝜌(𝑠, 𝑎, 𝑠
′) defined by eq.

(18).

The sojourn time in the aggregate state under policy 𝑢̂ is equal to:

𝑦𝑢(𝑠𝑎𝑔𝑔) = ∑ 𝑦𝑢(𝑠𝑖)𝑖=𝑀(𝜌)+1,…,𝑁 . (23)

Then, the out-going transition probabilities are computed as:

[𝑡𝜌̅(𝑠𝑎𝑔𝑔, 𝑠𝑗)]𝑢
= ∑ (

𝑦𝑢̂(𝑠𝑖)

𝑦𝑢̂(𝑠𝑎𝑔𝑔)
⋅ 𝑡̂𝜌(𝑠𝑖, 𝑢𝑔(𝑠𝑖), 𝑠𝑗))𝑖=𝑀(𝜌)+1,…,𝑁 , 𝑗 = 1,… ,𝑀(𝜌), (24)

where [𝑡]𝑢 denotes the transition probability 𝑡 under policy 𝑢̂. The in-going transitions

are computed as:

𝑡𝜌̅(𝑠𝑗 , 𝑢̂(𝑠𝑗), 𝑠𝑎𝑔𝑔) = ∑ 𝑡̂𝜌(𝑠𝑗 , 𝑢̂(𝑠𝑗), 𝑠𝑖)𝑖=𝑀(𝜌)+1,…,𝑁 , 𝑗 = 1,… ,𝑀(𝜌). (25)

The self-transition probability [𝑡𝜌̅(𝑠𝑎𝑔𝑔, 𝑠𝑗)]𝑢
 is always computed as in eq. (12)

by following the uniformization procedure.

Similarly, the reward of the border states is the same as the reward of the original

MDP, i.e., 𝑟̅(𝑠𝑖, 𝑎(𝑠𝑖)) = 𝑟(𝑠𝑖, 𝑎(𝑠𝑖)), 𝑖 = 1, … ,𝑀, whereas the sojourn times of the Γ̂𝜌

should be known in advance to compute the reward of the aggregate state under policy 𝑢̂:

[𝑟̅(𝑠𝑎𝑔𝑔)]𝑢̂ =
∑ (

𝑦𝑢̂(𝑠𝑖)

𝑦𝑢̂(𝑠𝑎𝑔𝑔)
⋅ (𝑠𝑖 , 𝑢𝑔(𝑠𝑖)))𝑖=𝑀(𝜌)+1,…,𝑁 , (26)

where [𝑟]𝑢 denotes the reward 𝑟 under policy 𝑢̂.

The expected average reward of Γ̅𝜌 under policy 𝑢̂ is then:

𝑅̅(𝑢̂) = (1 − 𝛾) ⋅ ∑ 𝑦𝑢(𝑠𝑖)𝑟(𝑠𝑖, 𝑢̂(𝑠𝑖))𝑖=1,…,𝑀(𝜌)

+(1 − 𝛾) ⋅ 𝑦𝑢(𝑠𝑎𝑔𝑔)[𝑟̅(𝑠𝑎𝑔𝑔)]𝑢̂, 𝑢̂ ∈ 𝑈̂𝜌. (27)

Property 1. The aggregated MDP Γ̅𝜌 = {𝑆𝜌̅, 𝐴̂𝜌, 𝑇̅𝜌, 𝑟̅} under policy 𝑢̂ generates the

same expected reward of the restricted MDP Γ̂𝜌 = {𝑆, 𝐴̂𝜌, 𝑇̂𝜌, 𝑟} under policy 𝑢̂: 𝑅̂(𝑢̂) =

𝑅̅(𝑢̂). ■

Proof. By substituting equation (26) into equation (27), which computes 𝑅̅(𝑢̂),

equation (19) , which computes 𝑅̂(𝑢̂), is straightforwardly obtained. ■

From Property 1, the following result follows:

Corollary 1. An optimal policy 𝑢̂𝜌
∗ of the restricted MDP Γ̂𝜌 is also an optimal

policy of the aggregated MDP Γ̅𝜌. ■

Corollary 2 follows from Theorem 1 and Corollary 1:

Corollary 2. Considering the original MDP Γ under optimal policy 𝑢∗and the

aggregated MDP Γ̅𝜌 under optimal restricted policy 𝑢̂𝜌
∗ , the following inequality holds:

𝑅(𝑢𝑔) ≤ 𝑅̅(𝑢̂𝜌
∗) ≤ 𝑅(𝑢∗). (28)

Moreover, 𝑅̅(𝑢̂0
∗) = 𝑅(𝑢∗), 𝑅̅(𝑢̂1

∗) = 𝑅(𝑢𝑔) and 𝑅̅(𝑢̂𝜌1
∗) ≤ 𝑅̅(𝑢̂𝜌2

∗) if 𝜌1 > 𝜌2, ∀𝜌1, 𝜌2 ∈

[0,1]. ■

The aggregated MDP Γ̅𝜌 cannot be solved by DP methods, since the computation

of the transition matrix and of the reward under a given policy 𝑢̂ requires the knowledge

of the sojourn times of the restricted MDP Γ̂𝜌 under the policy 𝑢̂. However, the results of

this Section will be exploited by the RL control algorithm defined in the next Section.

3.4 RL control algorithm

The aggregated MDP Γ̅𝜌 can be solved by means of RL algorithms, since RL

algorithms does not rely on the knowledge of the transition matrix and of the reward: as

the controller takes an action in a given state, it observes from the environment both the

next state and the immediate reward.

Since RL algorithms converge to the optimal policy, under given assumptions,

they can be used to find the optimal restricted policy acting on the aggregated MDP. From

Corollary 2, it follows that the value of the aggregation factor 𝜌 determines the trade-off

between scalability and performance of the algorithm: the number of aggregated states

grows with 𝜌, while the expected reward generated by the optimal restricted policy

decreases with 𝜌.

In the simulations of Section 4, a Q-learning algorithm is implemented that

performs the update rule (4) over the aggregate state space 𝑆𝜌̅ and the restricted action set

𝐴̂𝜌. The proposed algorithm implements an 𝜀-greedy policy in the border states. In the

aggregate state the controller always performs greedy actions and updates the action-

value function of the aggregate state accordingly (since the greedy actions are always

taken, there is one action-value function in 𝑠𝑎𝑔𝑔, and the single action-value function

coincides with the value function).

The learning rate 𝛼(𝑡) has the following law:

𝛼(𝑡) = 𝛼0
1

⌊𝑡/𝑡𝑒𝑥𝑝⌋+1
, (29)

where ⌊⋅⌋ is the lower-integer operator, 𝛼0 is the initial learning rate and 𝑡𝑒𝑥𝑝 is the number

of iterations during which the learning rate remains equal to 𝛼0. The learning rate (3)

verifies the convergence conditions ∑ 𝛼(𝑡)𝑡=1,…,∞ = ∞ and ∑ (𝛼(𝑡))
2

𝑡=1,…,∞ < ∞. The

learning rate (29) is initially large and then decays with time as the number of state visits

grows. In fact, since it is assumed that the environment is initially unknown, an initial

exploration is crucial for the learning phase; as the system explores the state space, the

estimate of the action-value functions becomes more accurate and 𝛼(𝑡) is lowered

accordingly.

The values of the algorithm parameters have been tuned by simulation runs and

then used in the simulations reported in Section 4.

4 Simulations

This Section presents some numerical simulation results. The two proposed RL

algorithms are evaluated against the results of a DP algorithm, and also against a simple

greedy policy. DP algorithms, scalability problems apart, find the optimal policy provided

that the statistical distribution of the demand is known. The greedy policy is the most

immediate policy to implement, and chooses the action that leads to the greatest

immediate reward; it is a myopic policy, since it does not consider any time horizon: there

is no guarantee that a choice that gives an immediate greater reward leads to a satisfactory

expected reward over the whole time horizon.

The algorithms are tested in different scenarios implemented in MATLAB®.

In the first simulation, 3 cloud providers are available and the CMB offers 2

classes of services. Table 1 shows the scenario parameters. Algorithm parameters were

selected as follows: 𝛼0 = 1, 𝑡𝑒𝑥𝑝 = 103, 𝜀 = 0.98 and 𝛾 = 0.89. The simulation length

was set to 3 ⋅ 105. All the simulation runs start from empty clouds.

Table 1. Scenario 1 parameters.

Parameter Value

𝐶 3

𝐾 2

𝑊𝑐 , 𝑐 = 1,2,3 {0.3,0.3,0.2}

𝑤𝑘 , 𝑘 = 1,2 {0.1,0.2}

𝜆𝑘, 𝑘 = 1,2 {0.05,0.15}

𝜇𝑘 , 𝑘 = 1,2 {0.5,0.15}

𝑟1𝑘
𝑝
, 𝑘 = 1,2 {1,0.9,1.25}

𝑟2𝑘
𝑝
, 𝑘 = 1,2 {2,0,2.5}

𝑟1𝑘
𝑜 , 𝑘 = 1,2 {0.2,0.3,0.25}

𝑟2𝑘
𝑜 , 𝑘 = 1,2 {0.35,0,0.4}

In this scenario, the non-aggregated state space size 𝑁 is small (150 feasible

states), so the optimal policy can be computed by DP algorithms.

Fig. 3 shows the results in terms of state space size and of revenue, averaged over

10 iterations. The figure shows that the revenue obtained with the Q-learning algorithm

without aggregation is about 92% of the optimal revenue, whereas the revenue obtained

with the greedy policy is about 72%. Even in this small scenario, the aggregation appears

effective for 𝜌 = 0.2 and 𝜌 = 0.4: in both cases the revenue is above 80% (about 85%

and 82%, respectively) with a state space size equal to 52% and 33% of the non-

aggregated state-space size, respectively.

Figure 3. First simulation results: comparison among greedy policy, Q-learning with

different levels of aggregation and optimal policy.

The second simulation considers a scenario with more availability of static

resources on the third cloud provider states, as indicated in Table 2. Algorithm parameters

were selected as follows: 𝛼0 = 1, 𝑡𝑒𝑥𝑝 = 10
5, 𝜀 = 0.98 and 𝛾 = 0.89. The simulation

length was set to 6 ⋅ 105. All the simulation runs start from empty clouds. In this scenario,

the state space size 𝑁 is much larger (~104 feasible states), and DP algorithms cannot be

used due to the scalability issue. With the proposed aggregation policy, by setting 𝜌 =

0.6, the number of states is reduced by one order of magnitude: 𝑀(𝜌) + 1 = 2.6 ⋅ 103.

0

50

100

150

G
re

ed
y 1

0
.8

0
.6

0
.4

0
.2 0

O
p

ti
m

al

Number of states

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

G
re

ed
y 1

0
.8

0
.6

0
.4

0
.2 0

O
p

ti
m

al

Revenue

Table 2. Scenario 2 parameters.

Parameter Value

𝐶 3

𝐾 2

𝑊𝑐 , 𝑐 = 1,2,3 {0.8,0.8,0.6}

𝑤𝑘 , 𝑘 = 1,2 {0.1,0.2}

𝜆𝑘, 𝑘 = 1,2 {0.5,0.6}

𝜇𝑘 , 𝑘 = 1,2 {0.5,0.15}

𝑟1𝑘
𝑝
, 𝑘 = 1,2 {1,1.2,1.5}

𝑟2𝑘
𝑝
, 𝑘 = 1,2 {2,1.8,1.2}

𝑟1𝑘
𝑜 , 𝑘 = 1,2 {0.2,0.3,0.2}

𝑟2𝑘
𝑜 , 𝑘 = 1,2 {0.25,0.35,0.45}

The results, in terms of revenue and of static allocations, averaged over 10

iterations, are shown in Figure 4, which shows similar results to the former simulation;

this time, the revenue obtained with the Q-learning policy averaged over 10 simulation

runs exceeds the one obtained with the greedy policy by about 22%. The figure also shows

that this gain was achieved thanks to a better exploitation of the static resources.

Figure 4. Second simulation results: comparison between greedy and aggregated Q-

learning.

5 Conclusions

Cloud Management Brokers (CMB) will play a crucial role in Network Function

Virtualization in the near future to allow a more flexible and scalable market. In the

considered scenario, the CMB is interfaced with different cloud providers and manages

their resources to satisfy the requests of the users while maximizing the CMB owner

revenue. Therefore, a multi-cloud resource allocation problem is dealt with in this paper.

0

1000

2000

3000

4000

Revenue Static allocations

Greedy

Q-Learning

Firstly, the resource allocation problem is modelled as a Markov Decision Process

(MDP). Then, the MDP is solved by means of a Reinforcement Learning algorithm;

finally, a policy reduction and a state aggregation strategies are proposed to cope with the

inherent scalability problems of MDPs. Numerical simulation results show that the

approximation strategy leads to an effective reduction of the problem size while well-

approximating the revenue obtained by the optimal solution.

Currently, the presented algorithm is being implemented in the demonstrator of

the T-NOVA research project, but, for a ready-to-market product, further studies are still

needed to improve its performances. A research area is to investigate approaches to

further improve the algorithm scalability in order to reduce the storage and computational

requirements, e.g., by means of machine-learning techniques to approximate the action-

value function over the aggregated state space (see (Xu, Zuo, & Huang, 2014) and

references therein). This aspect is particularly important due to the so-called curse of

dimensionality (Bertsekas, 1987), since the state-space dimension may explode in large

multi-cloud scenarios. Another area which has to be investigated is the algorithm

behavior and the required algorithm modifications in the presence of constraints (e.g.,

constraints on the distribution of the requests among the cloud providers or on the Quality

of Service which has to be grant to the users). A suitable approach may be the

lexicographic one (see (Gábor, Kalmár, & Szcpcsvári, 1998; Panfili, Pietrabissa, Oddi, &

Suraci, 2016), where the policy improvement step is still aimed at minimizing the cost

function but the candidate policies are also evaluated against the constraints, ranked in

order of importance.

Acknowledgements

Research supported by the EU project T-NOVA (T-NOVA, 2015), under FP7 ref

n 619520, and by the Italian project PLATINO (PLATINO, 2015), under Grant

Agreement n°PON01_01007. The authors wish to thank all the members of the project

teams of PLATINO and T-NOVA for their valuable contributions to the work.

References

Bertsekas, D. P. (1987). Dynamic Programming deterministic and stochastic models. Englewood Cliffs,

NJ: Prentice-Hall, Inc.

Buyya, R., Ranjan, R., & Calheiros, R. (2010). InterCloud: Utility-Oriented Federation of Cloud

Computing Environments for Scaling of Application Services. In C.-H. Hsu, L. Yang, J. Park, & S.-

S. Yeo (Eds.), Algorithms and Architectures for Parallel Processing SE - 2 (Vol. 6081, pp. 13–31).

Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-13119-6_2

Chaisiri, S., Lee, B. S., & Niyato, D. (2012). Optimization of resource provisioning cost in cloud

computing. IEEE Transactions on Services Computing, 5(2), 164–177.

http://doi.org/10.1109/TSC.2011.7

CompatibleOne. (2015). CompatibleOne: the Open Source Cloud Broker. Retrieved May 20, 2001, from

http://www.compatibleone.org/

Di Giorgio, A., Liberati, F., & Pietrabissa, A. (2013). On-board stochastic control of Electric Vehicle

recharging. In 52nd IEEE Conference on Decision and Control (pp. 5710–5715). IEEE.

http://doi.org/10.1109/CDC.2013.6760789

FI-Core. (2015). (Future Internet - Core Platform), EU FP7-ICT Large-scale Integrating Project (IP),

2014- 2016, grant agreement no. 632893. Retrieved from

http://cordis.europa.eu/project/rcn/192274_en.html

FIWARE. (2014). (Future Internet Ware), EU FP7-ICT Large-scale Integrating Project (IP), 2011- 2014,

grant agreement no. 312826. Retrieved from http://www.fi-ware.eu/

Gábor, Z., Kalmár, Z., & Szcpcsvári, C. (1998). Multi-criteria Reinforcement Learning. In International

Conference on Machine Learning (ICML 1998) (pp. 197–205). Madison, Wisconsin, USA.

Konstanteli, K., Cucinotta, T., Psychas, K., & Varvarigou, T. (2012). Admission Control for Elastic

Cloud Services. 2012 IEEE Fifth International Conference on Cloud Computing, 41–48.

http://doi.org/10.1109/CLOUD.2012.63

Lewis, F., & Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming for feedback

control. IEEE Circuits and Systems Magazine, 9(3), 32–50.

http://doi.org/10.1109/MCAS.2009.933854

Macone, D., Oddi, G., Palo, A., & Suraci, V. (2013). A dynamic load balancing algorithm for Quality of

Service and mobility management in next generation home networks. Telecommunication Systems,

53(3), 265–283. http://doi.org/10.1007/s11235-013-9697-y

Manfredi, S. (2014a). A theoretical analysis of multi-hop consensus algorithms for wireless networks:

Trade off among reliability, responsiveness and delay tolerance. Ad Hoc Networks, 13, 234–244.

http://doi.org/10.1016/j.adhoc.2011.05.005

Manfredi, S. (2014b). A theoretical analysis of multi-hop consensus algorithms for wireless networks:

Trade off among reliability, responsiveness and delay tolerance. Ad Hoc Networks, 13, 234–244.

http://doi.org/10.1016/j.adhoc.2011.05.005

Mascolo, S. (1999). Congestion control in high-speed communication networks using the Smith principle.

Automatica, 35(12), 1921–1935. http://doi.org/10.1016/S0005-1098(99)00128-4

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., … Turner, J.

(2008). OpenFlow. ACM SIGCOMM Computer Communication Review, 38(2), 69.

http://doi.org/10.1145/1355734.1355746

NIST. (2013). National Institute of Standards and Technology: Cloud Computing Program, Section 6.1.

Retrieved March 20, 2003, from http://www.nist.gov/itl/cloud/6_1.cfm

Oddi, G., Panfili, M., Pietrabissa, A., Zuccaro, L., & Suraci, V. (2013). A Resource Allocation Algorithm

of Multi-cloud Resources Based on Markov Decision Process. In 2013 IEEE 5th International

Conference on Cloud Computing Technology and Science (Vol. 1, pp. 130–135). IEEE.

http://doi.org/10.1109/CloudCom.2013.24

Panfili, M., Pietrabissa, A., Oddi, G., & Suraci, V. (2016). A lexicographic approach to constrained MDP

admission control. International Journal of Control, 89(2), 235–247.

http://doi.org/10.1080/00207179.2015.1068955

Pietrabissa, A. (2008a). Admission Control in UMTS Networks based on Approximate Dynamic

Programming. European Journal of Control, 14(1), 62–75. http://doi.org/10.3166/ejc.14.62-75

Pietrabissa, A. (2008b). An Alternative LP Formulation of the Admission Control Problem in Multiclass

Networks. IEEE Transactions on Automatic Control, 53(3), 839–845.

http://doi.org/10.1109/TAC.2008.919516

Pietrabissa, A. (2009). A policy approximation method for the UMTS connection admission control

problem modelled as an MDP. International Journal of Control, 82(10), 1814–1827.

http://doi.org/10.1080/00207170902774233

Pietrabissa, A. (2011a). A Reinforcement Learning Approach to Call Admission and Call Dropping

Control in Links with Variable Capacity. European Journal of Control, 17(1), 89–103.

http://doi.org/10.3166/ejc.17.89-103

Pietrabissa, A. (2011b). A Reinforcement Learning Approach to Call Admission and Call Dropping

Control in Links with Variable Capacity. European Journal of Control, 17(1), 89–103.

http://doi.org/10.3166/ejc.17.89-103

Pietrabissa, A., Battilotti, S., Facchinei, F., Giuseppi, A., Oddi, G., Panfili, M., & Suraci, V. (2015).

Resource management in multi-cloud scenarios via reinforcement learning. In 2015 34th Chinese

Control Conference (CCC) (Vol. 2015-Septe, pp. 9084–9089). IEEE.

http://doi.org/10.1109/ChiCC.2015.7261077

PLATINO. (2015). Platform for Innovative Services in Future Internet, Italian Ministry of University and

Research (MIUR) PLATINO project, Grant Agreement n° PON01_01007. Retrieved May 20, 2001,

from http://www.progettoplatino.it/

Puterman, M. L. (1994). Markov Decision Processes. (M. L. Puterman, Ed.). New York: John Wiley &

Sons, Inc. http://doi.org/10.1002/9780470316887

Rennie, J., & Mccallum, A. K. (1999). Using Reinforcement Learning to Spider the Web Efficiently.

ICML, 99, 335–343.

Sefraoui, O., Aissaoui, M., & Eleuldj, M. (2012). OpenStack: Toward an Open-source Solution for Cloud

Computing. International Journal of Computer Applications, 55(3), 38–42.

http://doi.org/10.5120/8738-2991

Sirocco. (2015). Sirocco project: an open-source multi-cloud manager. Retrieved May 20, 2001, from

http://sirocco.projects.ow2.org/xwiki/bin/view/Main

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press, Cambridge,

MA.

Tan, H., Balajee, K., & Lynn, D. (2014). Integration of evolutionary computing and reinforcement

learning for robotic imitation learning. In 2014 IEEE International Conference on Systems, Man,

and Cybernetics (SMC) (pp. 407–412). IEEE. http://doi.org/10.1109/SMC.2014.6973941

T-NOVA. (2015). Network Functions as-a-Service over Virtualised Infrastructures, EU FP7-ICT Large-

scale Integrating Project (IP), 2014- 2016. Retrieved May 20, 2011, from http://www.t-nova.eu/

Woo, S. S., & Mirkovic, J. (2014). Optimal application allocation on multiple public clouds. Computer

Networks, 68, 138–148. http://doi.org/10.1016/j.comnet.2013.12.001

Wu, L., Kumar Garg, S., & Buyya, R. (2012). SLA-based admission control for a Software-as-a-Service

provider in Cloud computing environments. In Journal of Computer and System Sciences (Vol. 78,

pp. 1280–1299). http://doi.org/10.1016/j.jcss.2011.12.014

Xu, X., Zuo, L., & Huang, Z. (2014). Reinforcement learning algorithms with function approximation:

Recent advances and applications. Information Sciences, 261, 1–31.

http://doi.org/10.1016/j.ins.2013.08.037

Yang, X., Liu, D., & Wang, D. (2014). Reinforcement learning for adaptive optimal control of unknown

continuous-time nonlinear systems with input constraints. International Journal of Control, 87(3),

553–566. http://doi.org/10.1080/00207179.2013.848292

