We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold Ω with smooth boundary. We give a computable, sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω, which is of independent interest. We also give a comparison theorem for geodesic balls.

Sharp bounds for the first eigenvalue of a fourth order Steklov problem / Raulot, Simon; Savo, Alessandro. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 25 Issue 3:(2015), pp. 1602-1619. [10.1007/s12220-014-9486-1]

Sharp bounds for the first eigenvalue of a fourth order Steklov problem

SAVO, Alessandro
2015

Abstract

We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold Ω with smooth boundary. We give a computable, sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω, which is of independent interest. We also give a comparison theorem for geodesic balls.
2015
Fourth order Steklov problem, Eigenvalues, Lower bounds
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp bounds for the first eigenvalue of a fourth order Steklov problem / Raulot, Simon; Savo, Alessandro. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 25 Issue 3:(2015), pp. 1602-1619. [10.1007/s12220-014-9486-1]
File allegati a questo prodotto
File Dimensione Formato  
raulot and savo.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 256.38 kB
Formato Adobe PDF
256.38 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/870620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact