Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.

The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes / Pierandrei, Silvia; Andrea, Luchetti; Massimo, Sanchez; Giuseppe, Novelli; Federica, Sangiuolo; Lucarelli, Marco. - In: MOLECULAR THERAPY NUCLEIC ACIDS. - ISSN 2162-2531. - STAMPA. - 5:(2016). [10.1038/mtna.2016.2]

The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

PIERANDREI, SILVIA;LUCARELLI, Marco
2016

Abstract

Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.
2016
Small fragment homologous replacement; SFHR; Gene targeting; Arrayed gene expression; DNA repair; Cell cycle
01 Pubblicazione su rivista::01a Articolo in rivista
The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes / Pierandrei, Silvia; Andrea, Luchetti; Massimo, Sanchez; Giuseppe, Novelli; Federica, Sangiuolo; Lucarelli, Marco. - In: MOLECULAR THERAPY NUCLEIC ACIDS. - ISSN 2162-2531. - STAMPA. - 5:(2016). [10.1038/mtna.2016.2]
File allegati a questo prodotto
File Dimensione Formato  
Pierandrei_Gene-targeting_2015.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.76 MB
Formato Adobe PDF
8.76 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/869208
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact