We investigate anomalous diffusion on compact Riemannian manifolds, modeled by time-changed Brownian motions. These stochastic processes are governed by equations involving the Laplace–Beltrami operator and a time-fractional derivative of order $\beta \in (0,1)$. We also consider time dependent random fields that can be viewed as random fields on randomly varying manifolds.

Fractional Cauchy problems on compact manifolds / D'Ovidio, Mirko; Nane, Erkan. - In: STOCHASTIC ANALYSIS AND APPLICATIONS. - ISSN 0736-2994. - 34:2(2016), pp. 232-257. [10.1080/07362994.2015.1116997]

Fractional Cauchy problems on compact manifolds

D'OVIDIO, MIRKO
Primo
Membro del Collaboration Group
;
2016

Abstract

We investigate anomalous diffusion on compact Riemannian manifolds, modeled by time-changed Brownian motions. These stochastic processes are governed by equations involving the Laplace–Beltrami operator and a time-fractional derivative of order $\beta \in (0,1)$. We also consider time dependent random fields that can be viewed as random fields on randomly varying manifolds.
2016
fractional diffusion; Random field on compact manifold; sphere, torus; stable subordinator; time-changed rotational Brownian Motion; Applied Mathematics; Statistics and Probability; Statistics, Probability and Uncertainty
01 Pubblicazione su rivista::01a Articolo in rivista
Fractional Cauchy problems on compact manifolds / D'Ovidio, Mirko; Nane, Erkan. - In: STOCHASTIC ANALYSIS AND APPLICATIONS. - ISSN 0736-2994. - 34:2(2016), pp. 232-257. [10.1080/07362994.2015.1116997]
File allegati a questo prodotto
File Dimensione Formato  
DOvidio-Fractional Cauchy problems-2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 696.15 kB
Formato Adobe PDF
696.15 kB Adobe PDF
DOvidio-Fractional Cauchy problems-2016.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 370.41 kB
Formato Adobe PDF
370.41 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/867728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact