We consider the semilinear Lane–Emden problem [Equation not available: see fulltext.]where B is the unit ball of RN, N≥ 2 , centered at the origin and 1 < p< pS, with pS= + ∞ if N= 2 and pS=N+2N-2 if N≥ 3. Our main result is to prove that in dimension N= 2 the Morse index of the least energy sign-changing radial solution up of (Ep) is exactly 12 if p is sufficiently large. As an intermediate step we compute explicitly the first eigenvalue of a limit weighted problem in RN in any dimension N≥ 2. © 2016, Springer-Verlag Berlin Heidelberg.
Exact morse index computation for nodal radial solutions of Lane-Emden problems / DE MARCHIS, Francesca; Ianni, Isabella; Pacella, Filomena. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 367:1-2(2017), pp. 185-227. [10.1007/s00208-016-1381-6]
Exact morse index computation for nodal radial solutions of Lane-Emden problems
DE MARCHIS, FRANCESCA;Ianni, Isabella;PACELLA, Filomena
2017
Abstract
We consider the semilinear Lane–Emden problem [Equation not available: see fulltext.]where B is the unit ball of RN, N≥ 2 , centered at the origin and 1 < p< pS, with pS= + ∞ if N= 2 and pS=N+2N-2 if N≥ 3. Our main result is to prove that in dimension N= 2 the Morse index of the least energy sign-changing radial solution up of (Ep) is exactly 12 if p is sufficiently large. As an intermediate step we compute explicitly the first eigenvalue of a limit weighted problem in RN in any dimension N≥ 2. © 2016, Springer-Verlag Berlin Heidelberg.File | Dimensione | Formato | |
---|---|---|---|
DeMarchis_Exact-morse-index_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
738.28 kB
Formato
Adobe PDF
|
738.28 kB | Adobe PDF | Contatta l'autore |
DeMarchis_postprint_Exact-morse-index_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
431.48 kB
Formato
Adobe PDF
|
431.48 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.